Unbiased Estimator for Location Parameter in Shifted Exponential| UPSC ISS 2025 Paper-2 | Problem-25
Автор: RitwikMath
Загружено: 2025-10-12
Просмотров: 31
Описание:
This video derives an unbiased estimator for the location parameter \(\theta\) when sampling from a shifted exponential distribution with PDF
\[
f(x) = e^{-(x - \theta)}, \quad x \theta,
\]
which is an exponential distribution shifted by \(\theta\). Using the sample mean \(\bar{X}\), the unbiased estimator for \(\theta\) is found as \(\bar{X} - 1\), since the expectation of \(\bar{X}\) is \(\theta + 1\). A clear, practical example of estimator construction with shifted distributions.
#upsc #upscaspirants #upscmotivation #upscexam #upscpreparation #civilservicesmains #statistics #statisticsoptional #statisticalmethods #probability #indianstatisticalservice #exponentialdistributionproblemsandsolutions #unbiased #statisticalmethods #statisticalmethods #statisticalinference #estimation
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: