Applied Machine Learning | Session 21 | Gradient Boosting, Random Forest & Model Stacking
Автор: gened
Загружено: 2025-07-17
Просмотров: 60
Описание:
We dive deep into advanced ensemble techniques using hands-on Python:
🌲 Random Forest – understand bagging with decision trees
🎯 Gradient Boosting – learn boosting methods for strong predictive models
🧩 Model Stacking – combine multiple models for better performance
🚀 End-to-end process: load data, feature engineer, preprocess
📈 Train and evaluate each model using accuracy, confusion matrix, precision, recall
🛡️ Detect and avoid overfitting with training vs. validation comparison
🔧 Tools & Libraries:
Python • pandas • NumPy • scikit-learn • XGBoost • matplotlib • seaborn
🔗 View the full notebook here:
https://github.com/GenEd-Tech/Applied...
Perfect for learners wanting to build ensemble models step-by-step. No fluff—just clear, practical ML in action!
👍 Like, Subscribe & Hit the Bell for more real-world ML tutorials!
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: