Day 1: Customer Churn Prediction with XGBoost + SHAP | 28 Projects in 28 Days (AI for Business)
Автор: Maryam BeiSafar
Загружено: 2025-07-01
Просмотров: 74
Описание:
🚨 Project 1 of 28 in my “28 Projects in 28 Days” series — showing real-world AI/ML solutions that solve actual business problems.
In this video, we tackle Customer Churn Prediction using:
📦 XGBoost for accurate classification
📊 SHAP for explainability
🧼 Data preprocessing and one-hot encoding
✅ Evaluation using confusion matrix and classification report
The dataset is modeled after Telco/Subscription services (think Netflix, Spotify, banking apps). We build an end-to-end churn prediction pipeline using Python, scikit-learn, and SHAP.
💡 Use Case: Understand why customers are leaving and take action before they churn!
📁 Dataset: Telco Customer Churn (public sample data)
💻 Tech Used: Python, Pandas, Scikit-learn, XGBoost, SHAP, Seaborn
Github: https://github.com/mariamcs/Customer_...
🔥 Subscribe and follow the entire challenge!
#28Projects28Days #ChurnPrediction #XGBoost #SHAP #DataScience #MachineLearning #AIforBusiness
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: