🔥 Tricky Telescoping Series Problem | tan⁻¹ Sum Simplification | IIT JEE Mains & Advanced Concept
Автор: MathswithVishal
Загружено: 2025-11-13
Просмотров: 447
Описание:
In this video, we solve a fascinating telescoping series problem involving tan⁻¹ functions — a favorite type in IIT JEE Mains and Advanced exams! 🧮
We’ll explore how to simplify
f(n)=tan[tan−111+2+tan−111+6+tan−111+12+⋯+tan−111+n(n+1)]f(n) = \tan \left[\tan^{-1}\frac{1}{1+2} + \tan^{-1}\frac{1}{1+6} + \tan^{-1}\frac{1}{1+12} + \cdots + \tan^{-1}\frac{1}{1+n(n+1)}\right]f(n)=tan[tan−11+21+tan−11+61+tan−11+121+⋯+tan−11+n(n+1)1]
and find f(2021) in the simplest form.
👉 Watch till the end to learn the telescoping trick behind tan⁻¹ series and improve your problem-solving speed!
🔹 Perfect for: JEE Aspirants | Class 11–12 Students | Math Lovers
🔹 Topics Covered: Inverse Trigonometric Functions, Series Simplification, Telescoping Sum
#JEE #Mathematics #Trigonometry #InverseTangent #IITJEE #MathTricks #SeriesSimplification
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: