ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Unizor - Geometry3D - Spherical Caps

Автор: Zor Shekhtman on UNIZOR Education

Загружено: 2015-11-24

Просмотров: 4341

Описание: Unizor - Creative Minds through Art of Mathematics - Math4Teens

Notes to a video lecture on http://www.unizor.com

Spherical Cap

A spherical cap is formed when a plane cuts through a sphere. This cut divides a sphere into two parts, and each can be called, technically, a spherical cap. Usually, however, it's the smaller one that is considered a "true" cap. The part of a cutting plane that is inside a sphere is a base of a spherical cap, and we know from the previous problems that it is a circle. The part of a sphere that belongs to a cap forms its dome.

A spherical cap is defined by two parameters - radius of a main sphere R, from which it is cut, and the height H defined as the length of the longest segment from a dome onto a base along a perpendicular to it. For "true" spherical caps, the ones we will be considering here, height H is smaller or equal to radius R of a main sphere.

Volume of a Cap
Let's start with a volume of a spherical cap of radius R and height H using already familiar process of approximation of this volume as a sum of volumes of cylinders of the same but small altitude and different radiuses stacked on each other.

The radius of the base circle (in terms of the radius of a main sphere R and the height of a spherical cap H) equals, by Pythagorean Theorem, to
L = √R²−(R−H)² = √2RH−H²

Let AB be a segment that lies along the height of our cap. Divide segment AB into N equal parts by points A1, A2,,, AN-1 from the "top" of the dome down (for uniformity, we can designate point A, the center of a base circle, as AN and point B at the "top" of the dome as A0) and draw planes parallel to a base through each such division point.
The intersection of each plane and a sphere is a circle with a center at a corresponding division point Ak because, if we take any two points X and Y on this intersection, lengths of AkX and AkY are equal since right triangles ΔOAkX and ΔOAkY are congruent by a common cathetus OAk and congruent hypotenuses OX=OY=R.

These planes slice our spherical cap into layers. Each layer resembles a cylinder in a way that it is bounded from top and bottom by two parallel planes and is somewhat rounded in shape, but it's not a true cylinder because its side surface is not formed by straight lines parallel to the same generatrix.

The next step is to make a cylinder within each layer preserving it's circular top base and replacing the side surface with a cylindrical surface by dropping perpendiculars from each point on the upper base towards its bottom base.

Now it's time to make a leap of faith and consider a reasonable, intuitively obvious statement that, as N→∞, the total volume of cylinders tends to some limit that we can call the volume of our spherical cap.

Our task is to calculate a sum of volumes of the N cylinders as a formula, that depends on radius of a sphere R, height of the cap H and the number of division points N, and to find its limit as N→∞, which will depend only on radius R and height H.
Let's calculate a volume of a cylinder #k and then summarize it by k∈[1,N].

By Pythagorean theorem, for any point X on a circle with center Ak
AkX² = OX² − OAk²
Point X is on a sphere, therefore OX=R
Point Ak is kth point of division of segment AB into N equal parts, therefore
OAk=R−H·k/N.

Hence, the square of a radius of a base of the kth cylinder equals to AkX² = R²−(R−H·k/N)²
Its altitude is, obviously, H/N.
Therefore, the volume Vk of the kth cylinder is
π[2RHk/N−(Hk/N)²]·H/N =2πRH²k/N² − πH³k²/N³

Now we have to summarize the volumes of all N cylinders and find the limit of this sum as N→∞.
We will use a symbol Σ for summation by k from 1 to N

V = Σ(Vk) = πRH²(N+1)/N − πH³(N+1)(2N+1)/6N²

Note that we have used a known and previously derived expressions for a sum of numbers from 1 to N:
Σk = N(N+1)/2
and for a sum of squares from 1 to N:
Σ(k²)=N(N+1)(2N+1)/6

The limit of (N+1)/N is 1. The limit of (N+1)(2N+1)/6N² is 2/6=1/3.

Therefore, the volume of the spherical cap equals to
Vcap = πRH² − πH³/3 = πH²(3R−H)/3

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Unizor - Geometry3D - Spherical Caps

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Unizor - Geometry3D - Spheres - Problems 1

Unizor - Geometry3D - Spheres - Problems 1

Unizor - Geometry3D - Spherical Sectors

Unizor - Geometry3D - Spherical Sectors

6.2.49 Найдите объем описанного тела. Шар, закрывающий сферу радиусом r и высотой h.

6.2.49 Найдите объем описанного тела. Шар, закрывающий сферу радиусом r и высотой h.

Unizor - Geometry3D - Spheres - Latitude, Longitude

Unizor - Geometry3D - Spheres - Latitude, Longitude

The Spherical Cap: Theory and Application.

The Spherical Cap: Theory and Application.

Unizor - Geometry2D - Apollonius Problems - Points and Circles

Unizor - Geometry2D - Apollonius Problems - Points and Circles

Cavalieri's Principle in 3D | Volume of a sphere |

Cavalieri's Principle in 3D | Volume of a sphere |

Lec 26: Spherical coordinates; surface area | MIT 18.02 Multivariable Calculus, Fall 2007

Lec 26: Spherical coordinates; surface area | MIT 18.02 Multivariable Calculus, Fall 2007

Volume of a sphere with a triple integral

Volume of a sphere with a triple integral

Объем крышки сферы

Объем крышки сферы

Proof for Volume of a Sphere (without Calculus)

Proof for Volume of a Sphere (without Calculus)

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Find the Volume of Any Shape Using Calculus

Find the Volume of Any Shape Using Calculus

Unizor - Geometry3D - Truncated Pyramid

Unizor - Geometry3D - Truncated Pyramid

PHYS 101 | Moment of Interia 7 - Moment of a Sphere

PHYS 101 | Moment of Interia 7 - Moment of a Sphere

«КРЕМАТОРИЙ» на Гусеницах: Почему Немцы РАССТРЕЛИВАЛИ Экипажи ЭТОГО Танка?

«КРЕМАТОРИЙ» на Гусеницах: Почему Немцы РАССТРЕЛИВАЛИ Экипажи ЭТОГО Танка?

SPHERE

SPHERE

Volume of cap of sphere

Volume of cap of sphere

Мы стоим на пороге нового конфликта! Что нас ждет дальше? Андрей Безруков про США, Россию и кризис

Мы стоим на пороге нового конфликта! Что нас ждет дальше? Андрей Безруков про США, Россию и кризис

Единственный в мире танк отлитый целиком КАК СТАТУЯ. Австралийский

Единственный в мире танк отлитый целиком КАК СТАТУЯ. Австралийский "Страж"

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]