ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

DisLLM: Distributed LLMs for Privacy Assurance in Resource-Constrained Environments

Автор: UCD NetsLab

Загружено: 2025-02-18

Просмотров: 148

Описание: 🛡 Demo: DisLLM - Distributed LLMs for Privacy Assurance in Resource-Constrained Environments
This demonstration presents DisLLM, a novel distributed learning framework that enables privacy-preserving and resource-efficient fine-tuning of Large Language Models (LLMs). By combining Federated Learning (FL), Split Learning (SL), and Low-Rank Adaptation (LoRA), DisLLM ensures that sensitive data remains on client devices while distributing computational load, making LLMs practical for resource-constrained environments.

🔑 Key Features:
Privacy-preserving distributed fine-tuning: Uses Splitfed Learning (SFL) to keep raw data on local devices while enabling collaborative model training.
Lightweight adaptation for resource efficiency: Integrates LoRA fine-tuning to reduce computational overhead while maintaining accuracy.
Enhanced security with Local Differential Privacy (LDP): Adds controlled noise to data before transmission, ensuring privacy protection.

💡 Why It Matters?
LLMs require massive datasets and computational resources, making them difficult to deploy in privacy-sensitive domains like healthcare and finance. Traditional cloud-based fine-tuning exposes sensitive data to third parties, raising security concerns. DisLLM eliminates the need to share raw data, optimizing model performance while ensuring privacy, scalability, and efficiency in low-resource settings.

✨ Technologies Used:
Splitfed Learning (SFL) for secure, hierarchical model training.
LoRA fine-tuning is used to reduce memory and computational costs.
Local Differential Privacy (LDP) for secure and noise-protected model updates.

📊 Results:
Achieves comparable accuracy to centralized fine-tuning while preserving privacy.
Reduces GPU memory usage by up to 20% compared to traditional FL architectures.
Scales efficiently across multiple clients with minimal computational overhead.

🚀 Experience the next step in privacy-preserving AI with DisLLM!

#LLM #FederatedLearning #PrivacyPreservingAI #MachineLearning #DisLLM #Netslabs

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
DisLLM: Distributed LLMs for Privacy Assurance in Resource-Constrained Environments

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]