Find cube root|easy method of cube root|learn with logic
Автор: Learn With Logic
Загружено: 2025-10-21
Просмотров: 789
Описание:
Final Answer: $\boxed{\frac{10}{3}}$
Solution:
Here we are trying to find the value of $(0.027)^{-\frac{1}{3}}$.
Step 1: First we convert $0.027$ into a fraction:
$$0.027 = \frac{27}{1000}$$
Step 2: Now we apply the power:
$$(0.027)^{-\frac{1}{3}} = \left(\frac{27}{1000}\right)^{-\frac{1}{3}}$$
Step 3: Negative power means taking the reciprocal:
$$= \left(\frac{1000}{27}\right)^{\frac{1}{3}}$$
Step 4: Cube root means taking the cube root of numerator and denominator separately:
$$= \frac{1000^{\frac{1}{3}}}{27^{\frac{1}{3}}}$$
Step 5: We know that $1000 = 10^3$ and $27 = 3^3$, so:
$$= \frac{(10^3)^{\frac{1}{3}}}{(3^3)^{\frac{1}{3}}} = \frac{10}{3}$$
So the final answer is $\boxed{\frac{10}{3}}$.
Explanation:
We solved this problem step-by-step. First we converted the decimal into a fraction, then handled the negative power, and then applied the cube root formula. It became easy because $1000$ and $27$ are perfect cubes.
#math #mathematics #algebra #cubeRoot #fraction #decimal #power #reciprocal #stepByStep #solution4u
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: