ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Aki Vehtari: On Bayesian Workflow

Автор: Generable

Загружено: 2021-03-29

Просмотров: 5937

Описание: We discuss some parts of the Bayesian workflow with a focus on the need and justification for an iterative process. The talk is partly based on a review paper by Gelman, Vehtari, Simpson, Margossian, Carpenter, Yao, Kennedy, Gabry, Bürkner, and Modrák with the following abstract: "The Bayesian approach to data analysis provides a powerful way to handle uncertainty in all observations, model parameters, and model structure using probability theory. Probabilistic programming languages make it easier to specify and fit Bayesian models, but this still leaves us with many options regarding constructing, evaluating, and using these models, along with many remaining challenges in computation. Using Bayesian inference to solve real-world problems requires not only statistical skills, subject matter knowledge, and programming, but also awareness of the decisions made in the process of data analysis. All of these aspects can be understood as part of a tangled workflow of applied Bayesian statistics. Beyond inference, the workflow also includes iterative model building, model checking, validation and troubleshooting of computational problems, model understanding, and model comparison. We review all these aspects of workflow in the context of several examples, keeping in mind that applied research can involve fitting many models for any given problem, even if only a subset of them are relevant once the analysis is over."

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Aki Vehtari: On Bayesian Workflow

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Paul Bürkner: An introduction to Bayesian multilevel modeling with brms

Paul Bürkner: An introduction to Bayesian multilevel modeling with brms

Andrew Gelman: Introduction to Bayesian Data Analysis and Stan with Andrew Gelman

Andrew Gelman: Introduction to Bayesian Data Analysis and Stan with Andrew Gelman

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Corrie Bartelheimer: A Bayesian Workflow with PyMC and ArviZ | PyData Berlin 2019

Corrie Bartelheimer: A Bayesian Workflow with PyMC and ArviZ | PyData Berlin 2019

Efficient Bayesian inference with Hamiltonian Monte Carlo -- Michael Betancourt (Part 1)

Efficient Bayesian inference with Hamiltonian Monte Carlo -- Michael Betancourt (Part 1)

Andrew Gelman -  Solve All Your Statistics Problems Using P-Values

Andrew Gelman - Solve All Your Statistics Problems Using P-Values

Understanding Bayesian Statistics Without Frequentist Language -- Richard McElreath (MPI)

Understanding Bayesian Statistics Without Frequentist Language -- Richard McElreath (MPI)

Charles Margossian: Some Outstanding Challenges when Solving ODEs in a Bayesian context

Charles Margossian: Some Outstanding Challenges when Solving ODEs in a Bayesian context

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

Frequentism and Bayesianism: What's the Big Deal? | SciPy 2014 | Jake VanderPlas

Frequentism and Bayesianism: What's the Big Deal? | SciPy 2014 | Jake VanderPlas

Bayesian Modeling with R and Stan (Reupload)

Bayesian Modeling with R and Stan (Reupload)

Bayesian Inference is Just Counting

Bayesian Inference is Just Counting

The Bayesian Workflow: Building a COVID-19 Model, Part 1 (Thomas Wiecki)

The Bayesian Workflow: Building a COVID-19 Model, Part 1 (Thomas Wiecki)

All About that Bayes: Probability, Statistics, and the Quest to Quantify Uncertainty

All About that Bayes: Probability, Statistics, and the Quest to Quantify Uncertainty

‪Benjamin Goodrich: Introduction to Bayesian Computation Using the rstanarm R Package

‪Benjamin Goodrich: Introduction to Bayesian Computation Using the rstanarm R Package

Bayesian Hierarchical Models

Bayesian Hierarchical Models

The Statistical Crisis in Science and How to Move Forward by Professor Andrew Gelman

The Statistical Crisis in Science and How to Move Forward by Professor Andrew Gelman

History of Bayesian Neural Networks (Keynote talk)

History of Bayesian Neural Networks (Keynote talk)

R-Ladies Amsterdam: Intro to Bayesian Statistics in R by Angelika Stefan

R-Ladies Amsterdam: Intro to Bayesian Statistics in R by Angelika Stefan

first intro to bayesian regression using the brms R package

first intro to bayesian regression using the brms R package

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]