Calculer la DÉRIVÉE PARTIELLE en UN POINT - Formule & Exemples - Analyse Maths - Bac+1 / Bac+2
Автор: Fabinou
Загружено: 2021-01-16
Просмотров: 31456
Описание:
A travers 2 exemples, on va voir la formule pour calculer la dérivée partielle en un point. On comprendra alors le raisonnement pour montrer qu’une fonction admet (ou n’admet pas) une dérivée partielle en un point, puis celui pour trouver la valeur de cette dérivée partielle.
On verra dans un premier temps la formule, d’abord de manière « formelle » (cad comme dans le cours), puis avec un mini exemple, ce qui nous permettra de mieux appréhender cette formule.
Ensuite, à travers l’exemple d’une fonction à 2 variables, on calculera sa dérivée partielle en l’origine suivant sa 1ère variable x puis suivant sa 2ème variable y. Cela nous permettra de couvrir l’exemple d’une fonction qui n’admet pas de dérivée partielle (car celle-ci tendra vers ± l’infini).
Ainsi, vous saurez tout bien comme il faut calculer une dérivée partielle, et en un point, et sur un intervalle.
Dans cette vidéo :
0:00 Intro & présentation
0:33 Formule
2:24 Exemple - partie 1
7:39 Exemple - partie 2
10:12 Fin
J'essaye de bien expliquer :) ... en 4K 😝
Fonctions à plusieurs variables - Analyse Maths - Maths - Prépa/Licence/IUT/BTS 1e ou 2e année
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: