ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How to Concatenate N Rows Side-by-Side in Pandas

Автор: vlogize

Загружено: 2025-05-25

Просмотров: 0

Описание: Learn how to efficiently combine multiple rows in a Pandas DataFrame side-by-side, creating a compiled dataset from smaller segments.
---
This video is based on the question https://stackoverflow.com/q/72105167/ asked by the user 'bigci10' ( https://stackoverflow.com/u/13537778/ ) and on the answer https://stackoverflow.com/a/72105729/ provided by the user 'Cameron Riddell' ( https://stackoverflow.com/u/14278448/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to concatenate n rows side-by-side in pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Concatenate N Rows Side-by-Side in Pandas: A Step-by-Step Guide

Combining multiple rows in a Pandas DataFrame into a single row can be a desirable operation for data analysis and manipulation. In this guide, we'll explore how to concatenate every five rows of a dataset side-by-side, effectively transforming your DataFrame into a new format. This is particularly useful when you have a structured dataset, and you want to create a broader view of the information encompassed in those rows.

Understanding the Problem

Imagine you have a dataset with 700 rows and 7 columns, where each row contains certain values. Your goal is to take every five rows and combine them side by side into a new row while maintaining the column structure. For example, if your initial five rows look like this:

[[See Video to Reveal this Text or Code Snippet]]

You want your combined first row to look like:

[[See Video to Reveal this Text or Code Snippet]]

Setting Up the Environment

To accomplish this task, we will use Python's Pandas and NumPy libraries. If you haven't already, you can install them via pip:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

Step 1: Import Required Libraries

First, you need to import the necessary libraries in your Python environment:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create the DataFrame

You can create a Pandas DataFrame for demonstration purposes. Here's a quick way to generate a sample dataset:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Concatenate Rows

Next, the main operation will be reshaping your DataFrame to concatenate every five rows side-by-side. This can be done using NumPy's reshape function with the following code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

df.to_numpy(): Converts the DataFrame into a NumPy array.

reshape(-1, df.shape[1] * 5): Reshapes the array into a new shape where the number of columns is 5 times the original number of columns, effectively stacking the relevant data side by side.

*columns=[df.columns] * 5: Sets the column names for the new DataFrame, repeating the original column names for clarity.

Output

After running the above code, you will get a new DataFrame where every 5 rows from the original DataFrame have been concatenated into one row. The resulting DataFrame will have 2 rows with new concatenated columns, producing a much broader representation of your data.

Conclusion

In summary, concatenating rows in a Pandas DataFrame is a powerful data manipulation technique that can help streamline your dataset for analysis. Leveraging NumPy's capabilities alongside Pandas makes this process efficient and simple. By following the steps in this guide, you can transform your data efficiently and effectively combine rows side-by-side for enhanced visibility into your datasets.

Whether you're working on data clean-up or preparing data for analysis, mastering this technique will significantly enhance your data manipulation skills in Python. Happy coding!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How to Concatenate N Rows Side-by-Side in Pandas

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

#20. Pandas: Concatenate, Append in Python - 8 | Tutorial

#20. Pandas: Concatenate, Append in Python - 8 | Tutorial

10 Most Asked Excel Interview Questions 2025 | Excel Interview Questions & Answers | Intellipaat

10 Most Asked Excel Interview Questions 2025 | Excel Interview Questions & Answers | Intellipaat

Merging DataFrames in Pandas | Python Pandas Tutorials

Merging DataFrames in Pandas | Python Pandas Tutorials

Java Swing For Beginners | What is Java Swing | Java Swing Tutorial | Intellipaat

Java Swing For Beginners | What is Java Swing | Java Swing Tutorial | Intellipaat

Learn 12 Advanced SQL Concepts in 20 Minutes (project files included!)

Learn 12 Advanced SQL Concepts in 20 Minutes (project files included!)

Учебник по Excel за 15 минут

Учебник по Excel за 15 минут

Power BI UX Just Got Easier

Power BI UX Just Got Easier

Украина сожгла пять систем С-400 в Крыму. Работали супер-дроны

Украина сожгла пять систем С-400 в Крыму. Работали супер-дроны

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

"У нас огромные бессмысленные потери! Остановитесь" Военблогеры рассказали о цене наступления России

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]