ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Lecture 14: Zero-Sum Games

Автор: MIT OpenCourseWare

Загружено: 2025-12-17

Просмотров: 886

Описание: We introduce zero-sum games. We define the payoff matrix. We then give several examples of zero-sum games (matching pennies and a more complicated game). We then explain the concept of Nash equilibrium.


MIT 18.200 Principles of Discrete Applied Mathematics, Spring 2024
Instructor: Ankur Moitra
View the complete course: https://ocw.mit.edu/courses/18-200-pr...
YouTube Playlist:    • MIT 18.200 Principles of Discrete Applied ...  

We introduce zero-sum games. We define the payoff matrix. We then give several examples of zero-sum games (matching pennies and a more complicated game). We then explain the concept of Nash equilibrium.

License: Creative Commons BY-NC-SA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu
Support OCW at http://ow.ly/a1If50zVRlQ

We encourage constructive comments and discussion on OCW’s YouTube and other social media channels. Personal attacks, hate speech, trolling, and inappropriate comments are not allowed and may be removed. More details at https://ocw.mit.edu/comments.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lecture 14: Zero-Sum Games

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Lecture 15: Max-Flow Min-Cut Theorem

Lecture 15: Max-Flow Min-Cut Theorem

MIT 18.200 Principles of Discrete Applied Mathematics, Spring 2024

MIT 18.200 Principles of Discrete Applied Mathematics, Spring 2024

Germany | Can you solve this? | Math Olympiad #education #maths #math

Germany | Can you solve this? | Math Olympiad #education #maths #math

Lecture 1: Pigeonhole Principle

Lecture 1: Pigeonhole Principle

MIT 15.773 Hands-On Deep Learning Spring 2024

MIT 15.773 Hands-On Deep Learning Spring 2024

🇬🇧 How To Construct Brillouin Zones (Easy Explanation!) | Solid State Physics [English]

🇬🇧 How To Construct Brillouin Zones (Easy Explanation!) | Solid State Physics [English]

Basics of Finance and Information Management

Basics of Finance and Information Management

1: Introduction to Neural Networks and Deep Learning; Training Deep NNs

1: Introduction to Neural Networks and Deep Learning; Training Deep NNs

Databricks Live Bootcamp | Day1: Introduction & Data Analytics

Databricks Live Bootcamp | Day1: Introduction & Data Analytics

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Lecture 7: Generating Functions for Catalan Numbers

Lecture 7: Generating Functions for Catalan Numbers

26. Chernobyl — How It Happened

26. Chernobyl — How It Happened

Lecture 3: Inclusion-Exclusion

Lecture 3: Inclusion-Exclusion

Lec 1 | MIT 9.00SC Introduction to Psychology, Spring 2011

Lec 1 | MIT 9.00SC Introduction to Psychology, Spring 2011

HIKARU V 4000 ELO BOT!!

HIKARU V 4000 ELO BOT!!

Lecture 20: Reed-Solomon Codes

Lecture 20: Reed-Solomon Codes

MIT Introduction to Deep Learning | 6.S191

MIT Introduction to Deep Learning | 6.S191

Quantum Computing 101: Foundations, Frontiers, and Future Impact: Will Oliver

Quantum Computing 101: Foundations, Frontiers, and Future Impact: Will Oliver

Differential Form Review & Exterior Derivative - Topological Insulators #9

Differential Form Review & Exterior Derivative - Topological Insulators #9

His Chess Literally BROKE Computers

His Chess Literally BROKE Computers

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]