ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Real-Time 3D Point Cloud Classification for 3D Shapes (PCA + Random Forests): Micro Course

Point Cloud

LiDAR

3D

Data Science

Modelling

Geospatial

Python

3D Python

Vectorization

Segmentation

AI

RANSAC

Shape Detection

3D AI

Generative AI

Автор: Florent Poux

Загружено: 2025-03-20

Просмотров: 2279

Описание: 1. 📕 Early-release of my new book with O'Reilly: https://www.oreilly.com/library/view/...

2. 🎓 Learn 3D Data and GeoAI: https://learngeodata.eu

Learn how to build a lightning-fast 3D point cloud classifier using Principal Component Analysis (PCA) and Random Forest that achieves 92% accuracy without deep learning. This tutorial shows you how to extract geometric features from point clouds and classify buildings, ground, and vegetation in real-time using Python. Based on techniques from the "3D Data Science with Python" book and implemented in the open-source 3D Segmentor OS project. Perfect for LiDAR processing, autonomous vehicles, and 3D mapping with limited computational resources.

🙋 FOLLOW ME
Linkedin:   / florent-poux-point-cloud  
Medium:   / florentpoux  

🍇 RESOURCES
Coming Soon

WHO AM I?
If we haven’t yet before - Hey 👋 I’m Florent, a professor-turned-entrepreneur, and I’ve somehow become one of the most-followed 3D experts. Through my videos here on this channel and my writing, I share evidence-based strategies and tools to help you be better coders and 3D innovators.

📜 CHAPTERS
[00:00] Introduction: 3D Point Cloud Classification using PCA with Random Forest
[00:50] Learning Outcomes: What you'll be able to achieve after this tutorial.
[02:05] Setup: Explanation of the required environment, Anaconda virtual environment, and needed libraries (NumPy, scikit-learn, Open3D, readPLY).
[03:45] Creating a 3D Visualizer: Introduction to a helper function for visualizing point clouds and testing it with random data.
[05:00] Outlier Removal: Explanation of the Outlier Removal function using K-Nearest Neighbors.
[07:54] Normalization: Point Cloud Normalization.
[10:10] PCA Feature Extraction: In-depth overview of Principal Component Analysis (PCA), its relevance, mathematical background, and implementation for feature extraction from point clouds.
[16:30] Testing shapes: Executing the PCA feature computation across multiple shapes, with details in the console for each element
[18:50] Model definition: Random forest model definition, describing important parameters
[22:26] Dataset Creation: Demonstrating simulation of training data (features and labels) by creating synthetic spheres, cylinders, and planes.
[23:40] Training: Training the classifier, printing out the relevant statistics about the trained model.
[25:18] Inference Function Pipeline: Discussion and explanation of creating an inference function to apply the trained model to new, unseen data.
[27:20] Testing Inference on Dummy Data: Testing the inference on simulated data, showing the process of classifying a generated plane and its classification time.
[30:05] Running the Inference on Actual Generated Shapes: Loading 3D shapes (cube, cylinder, plane, sphere) from files and running them through the inference pipeline to classify them.
[32:25] Extending to Super Nice Ideas: Discussion on ways to extend and improve the current system, focusing on model creation

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Real-Time 3D Point Cloud Classification for 3D Shapes (PCA + Random Forests): Micro Course

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Come migrare verso Event-Driven Architectures - Luca Mezzalira

Come migrare verso Event-Driven Architectures - Luca Mezzalira

Feature selection in machine learning | Full course

Feature selection in machine learning | Full course

Python Point Clouds: Scene Graphs for LLM Reasoning (Tutorial Part 1)

Python Point Clouds: Scene Graphs for LLM Reasoning (Tutorial Part 1)

41 Tools and AI Methods for 3D Data Processing: The Ultimate 3D Toolbox

41 Tools and AI Methods for 3D Data Processing: The Ultimate 3D Toolbox

3D Clustering Mastery: How to Segment Point Clouds with Graph Theory

3D Clustering Mastery: How to Segment Point Clouds with Graph Theory

How to Build 3D Data Tools in Python: The Ultimate Beginner's Guide

How to Build 3D Data Tools in Python: The Ultimate Beginner's Guide

Как автоматизировать анализ информации с n8n и AI:  на примере анализа резюме

Как автоматизировать анализ информации с n8n и AI: на примере анализа резюме

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

3D Data for Beginners: Top 11 Tools to Start

3D Data for Beginners: Top 11 Tools to Start

How to Generate Synthetic 3D Point Cloud Rooms with Labels (Python Tutorial)

How to Generate Synthetic 3D Point Cloud Rooms with Labels (Python Tutorial)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]