ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Lecture 21: Minimizing a Function Step by Step

Автор: MIT OpenCourseWare

Загружено: 2019-05-16

Просмотров: 41765

Описание: MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018
Instructor: Gilbert Strang
View the complete course: https://ocw.mit.edu/18-065S18
YouTube Playlist:    • MIT 18.065 Matrix Methods in Data Analysis...  

In this lecture, Professor Strang discusses optimization, the fundamental algorithm that goes into deep learning. Later in the lecture he reviews the structure of convolutional neural networks (CNN) used in analyzing visual imagery.

License: Creative Commons BY-NC-SA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lecture 21: Minimizing a Function Step by Step

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

22. Gradient Descent: Downhill to a Minimum

22. Gradient Descent: Downhill to a Minimum

Lecture 11: Minimizing ‖x‖ Subject to Ax = b

Lecture 11: Minimizing ‖x‖ Subject to Ax = b

23. Accelerating Gradient Descent (Use Momentum)

23. Accelerating Gradient Descent (Use Momentum)

25. Stochastic Gradient Descent

25. Stochastic Gradient Descent

Why particles might not exist | Sabine Hossenfelder, Hilary Lawson, Tim Maudlin

Why particles might not exist | Sabine Hossenfelder, Hilary Lawson, Tim Maudlin

What Is Mathematical Optimization?

What Is Mathematical Optimization?

6. Singular Value Decomposition (SVD)

6. Singular Value Decomposition (SVD)

Lecture 13: Randomized Matrix Multiplication

Lecture 13: Randomized Matrix Multiplication

9. Four Ways to Solve Least Squares Problems

9. Four Ways to Solve Least Squares Problems

7. Eckart-Young: The Closest Rank k Matrix to A

7. Eckart-Young: The Closest Rank k Matrix to A

Gilbert Strang: Linear Algebra, Teaching, and MIT OpenCourseWare | Lex Fridman Podcast #52

Gilbert Strang: Linear Algebra, Teaching, and MIT OpenCourseWare | Lex Fridman Podcast #52

Yuval Noah Harari: Why advanced societies fall for mass delusion

Yuval Noah Harari: Why advanced societies fall for mass delusion

20. Definitions and Inequalities

20. Definitions and Inequalities

Lecture 36: Alan Edelman and Julia Language

Lecture 36: Alan Edelman and Julia Language

5. Positive Definite and Semidefinite Matrices

5. Positive Definite and Semidefinite Matrices

The AI Bubble is Worse Than You Think

The AI Bubble is Worse Than You Think

Levenberg-Marquardt Algorithm

Levenberg-Marquardt Algorithm

Gradient Descent in 3 minutes

Gradient Descent in 3 minutes

19. Saddle Points Continued, Maxmin Principle

19. Saddle Points Continued, Maxmin Principle

Gradient Descent, Step-by-Step

Gradient Descent, Step-by-Step

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]