ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

MADAR: Efficient Continual Learning for Malware Analysis with Diversity-Aware Replay

Автор: CAMLIS

Загружено: 2025-11-13

Просмотров: 19

Описание: Speaker: Mohammad Saidur Rahman

Author(s): Mohammad Saidur Rahman; Scott Coull; Qi Yu; Matthew Wright

Abstract: This study proposes MADAR, a Continual Learning (CL) framework for malware classification, which addresses catastrophic forgetting by incorporating diversity-aware replay. It demonstrates improved detection accuracy for both Windows and Android malware datasets.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
MADAR: Efficient Continual Learning for Malware Analysis with Diversity-Aware Replay

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

BlackIce: A Containerized Red Teaming Toolkit for AI Security Testing

BlackIce: A Containerized Red Teaming Toolkit for AI Security Testing

NIEBEZPIECZNE ZWIĄZKI byłego PEŁNOMOCNIKA RZĄDU TUSKA. Kontrwywiad musiał zadziałać

NIEBEZPIECZNE ZWIĄZKI byłego PEŁNOMOCNIKA RZĄDU TUSKA. Kontrwywiad musiał zadziałać

A Framework for Adaptive Multi-Turn Jailbreak Attacks on Large Language Models

A Framework for Adaptive Multi-Turn Jailbreak Attacks on Large Language Models

Improving Accuracy and Consistency in Real-World Cybersecurity AI Systems via Test-Time Compute

Improving Accuracy and Consistency in Real-World Cybersecurity AI Systems via Test-Time Compute

Reason. Search. Retrieve. Repeat. Iterative Retrieval for Automating Vulnerable Code Discovery

Reason. Search. Retrieve. Repeat. Iterative Retrieval for Automating Vulnerable Code Discovery

Adversarial ML Attacks on Financial Reporting via Maximum Violated Multi-Objective Attack

Adversarial ML Attacks on Financial Reporting via Maximum Violated Multi-Objective Attack

AGAPI: AtomGPT.org API for Agentic AI in Materials Discovery and Design

AGAPI: AtomGPT.org API for Agentic AI in Materials Discovery and Design

Attack Surfaces in Computer Use Agents: A Practical Taxonomy

Attack Surfaces in Computer Use Agents: A Practical Taxonomy

RIG-RAG: A GraphRAG Inspired Approach to Agentic Cloud Infrastructure

RIG-RAG: A GraphRAG Inspired Approach to Agentic Cloud Infrastructure

Всего 40 строк кода

Всего 40 строк кода

Evaluating Risk-Based Authentication Effectiveness in Production 2FA Systems

Evaluating Risk-Based Authentication Effectiveness in Production 2FA Systems

ShadowLogic: Hidden Backdoors in Any Whitebox LLM

ShadowLogic: Hidden Backdoors in Any Whitebox LLM

Keynote - What Does It Mean for Agentic AI to Preserve Privacy? Mapping the New Data Sinks and Leaks

Keynote - What Does It Mean for Agentic AI to Preserve Privacy? Mapping the New Data Sinks and Leaks

Adaptive by Design: Contextual Reinforcement Learning for Mission-Ready Cyber Defence

Adaptive by Design: Contextual Reinforcement Learning for Mission-Ready Cyber Defence

LLM Salting: From Rainbow Tables to Jailbreaks

LLM Salting: From Rainbow Tables to Jailbreaks

Accelerating AI red teaming operations with the Python Risk Identification Tool (PyRIT)

Accelerating AI red teaming operations with the Python Risk Identification Tool (PyRIT)

Social Attack Surfaces: Emerging Cybersecurity Threats in Open Source Collaboration

Social Attack Surfaces: Emerging Cybersecurity Threats in Open Source Collaboration

OpenClaw: чит-код для продуктивности или подарок хакерам?

OpenClaw: чит-код для продуктивности или подарок хакерам?

За что мы на самом деле ненавидим HR

За что мы на самом деле ненавидим HR

Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models

Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]