ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Jonathan Mugan: RLlib, a Python Library for Deep Hierarchical Multi-Agent Reinforcement Learning

Автор: Austin Python Meetup

Загружено: 2022-05-12

Просмотров: 10688

Описание: Description: Reinforcement learning (RL) is an effective method for solving problems that require agents to learn the best way to act in complex environments. RLlib is a powerful tool for applying reinforcement learning to problems where there are multiple agents or when agents must take on multiple roles. There exist many resources for learning about RLlib from a theoretical or academic perspective, but there is a lack of materials for learning how to use RLlib to solve your own practical problems. This overview will be a step toward filling that gap.
We will begin to show you how to apply reinforcement learning to your problems by taking you through a custom environment and demonstrating how to apply RLlib to that environment. We make the code available on GitHub. We will further elaborate on this material in a 90-minute workshop at the upcoming Data Day Texas.

Bio: Jonathan Mugan (Linkedin) is a researcher specializing in artificial intelligence, machine learning, and natural language processing. His current research focuses in the area of deep learning for natural language generation and understanding. Dr. Mugan received his Ph.D. in Computer Science from the University of Texas at Austin. His thesis was centered in developmental robotics, which is an area of research that seeks to understand how robots can learn about the world in the same way that human children do. Dr. Mugan also held a post-doctoral position at Carnegie Mellon University, where he worked at the intersection of machine learning and human-computer interaction. One of the most requested speakers at the Data Day Texas conferences, he recently also spoke on the topic of NLP at the O’Reilly AI conference, and is the creator of the O’Reilly video course Natural Language Text Processing with Python. Dr. Mugan is also the author of The Curiosity Cycle: Preparing Your Child for the Ongoing Technological Explosion.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Jonathan Mugan:  RLlib, a Python Library for Deep Hierarchical Multi-Agent Reinforcement Learning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Внутренняя мотивация для мультиагентного обучения с подкреплением

Внутренняя мотивация для мультиагентного обучения с подкреплением

SESSION 4 | Multi-Agent Reinforcement Learning: Foundations and Modern Approaches | IIIA-CSIC Course

SESSION 4 | Multi-Agent Reinforcement Learning: Foundations and Modern Approaches | IIIA-CSIC Course

The FASTEST introduction to Reinforcement Learning on the internet

The FASTEST introduction to Reinforcement Learning on the internet

The Role of Multi-Agent Learning in Artificial Intelligence Research at DeepMind

The Role of Multi-Agent Learning in Artificial Intelligence Research at DeepMind

Robot Learning: Multi-Agent Reinforcement Learning and RLHF

Robot Learning: Multi-Agent Reinforcement Learning and RLHF

Ray for Reinforcement Learning | UC Berkeley RISELab

Ray for Reinforcement Learning | UC Berkeley RISELab

"Learning to Communicate in Multi-Agent Systems" - Amanda Prorok

George Mazzeo - Fast Agents

George Mazzeo - Fast Agents

Can AI Learn to Cooperate? Multi Agent Deep Deterministic Policy Gradients (MADDPG) in PyTorch

Can AI Learn to Cooperate? Multi Agent Deep Deterministic Policy Gradients (MADDPG) in PyTorch

Stanford CS25: V1 I Decision Transformer: Reinforcement Learning via Sequence Modeling

Stanford CS25: V1 I Decision Transformer: Reinforcement Learning via Sequence Modeling

Reinforcement Learning in the Presence of Nonstationary Variables with Simon Ouellette

Reinforcement Learning in the Presence of Nonstationary Variables with Simon Ouellette

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Just Released: Self-Learning Multi-AI Agent using Reinforcement learning

Just Released: Self-Learning Multi-AI Agent using Reinforcement learning

Policy Gradient Theorem Explained - Reinforcement Learning

Policy Gradient Theorem Explained - Reinforcement Learning

Deep Reinforcement Learning for Multi-Agent Interaction - Stefano Albrecht

Deep Reinforcement Learning for Multi-Agent Interaction - Stefano Albrecht

Jorge Nicho - Introduction to ROS, the Robot Operating System!

Jorge Nicho - Introduction to ROS, the Robot Operating System!

DeepMind - The Role of Multi-Agent Learning in Artificial Intelligence Research

DeepMind - The Role of Multi-Agent Learning in Artificial Intelligence Research

Исследовательский анализ данных с помощью Pandas Python

Исследовательский анализ данных с помощью Pandas Python

NotebookLM + Gemini: 3 бизнес-кейса, которые взрывают мозг

NotebookLM + Gemini: 3 бизнес-кейса, которые взрывают мозг

Factored Value Functions for Cooperative Multi-Agent Reinforcement Learning

Factored Value Functions for Cooperative Multi-Agent Reinforcement Learning

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]