ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

PhD Thesis Defense - Jonathan Courtois – Université Côte d’Azur · CNRS · LEAT : Sparsity in SNNs

Автор: EUR DS4H - Digital Systems for Humans

Загружено: 2025-12-16

Просмотров: 72

Описание: Soutenance de Thèse - Thesis Defense - Jonathan Courtois, Université Côte d'Azur, CNRS, LEAT
Supervisors: Benoit Miramond, LEAT, Alain Pegatoquet, LEAT

Sparsity Optimization in Spike Neural Networks for Embedded Event-Vision Processing
Optimisation de la sparsité dans les réseaux de neurones à impulsion pour le traitement de données événementielles

00:00 Introduction
03:15 Context & Motivation
08:40 Event-Based Vision & SNNs
17:30 Energy Efficiency Metrics
28:10 Satellite Pose Estimation
40:30 Discussion & Perspectives
44:10 Conlusion
46:05 Phd Doctor Serment

This PhD thesis investigates Spiking Neural Networks (SNNs) for event-based data processing in embedded systems operating under strict energy constraints, with a particular focus on space applications.

While Formal Artificial Neural Networks (FNNs) achieve high performance on complex tasks, their energy consumption often prevents their deployment on embedded or space platforms. Inspired by the human brain — capable of processing complex information with ~20 W — neuromorphic computing offers a promising alternative.
SNNs leverage event-driven, spike-based computation, enabling sparse and asynchronous information processing. When combined with event-based cameras, which transmit only meaningful changes in visual scenes, these systems become highly suited for low-power vision applications.

This thesis develops a complete methodology for the design and evaluation of embedded SNNs on neuromorphic hardware. The main contribution is to assess the feasibility of complex tasks such as object detection and pose estimation for space applications using neuromorphic, event-based approaches — a research area that remains unexplored at this level of complexity. In light of this novelty, our work progresses methodically through all stages of SNN implementation.

We begin by defining a hardware-agnostic metric to evaluate the energy efficiency of SNNs compared to FNNs. The results show that SNNs can achieve a 6- to 8-fold reduction in energy consumption compared to equivalent FNNs while maintaining comparable accuracy, with memory access energy dominating the total consumption. This provides a crucial foundation for designing future solutions.

Building on this basis, we contribute to the extension of QUALIA, an open-source framework for designing, training, quantizing and deploying neural networks (FNNs and SNNs) on various platforms (CPU, microcontroller, FPGA). QUALIA bridges the gap between high-level neural network specifications and hardware implementations, supports PyTorch-based SNN development, and integrates SPLEAT, a configurable neuromorphic accelerator on FPGA. The toolchain is completed by QUALIABENCH, an automation solution that democratizes access to neuromorphic technologies by enabling systematic deployment and evaluation of networks on the target hardware without requiring in-depth hardware expertise.

Progressing from simple to more complex implementations, we push the limits of SNNs on neuromorphic hardware. The object detection solution deployed on the SPLEAT platform achieves 46% faster inference with a threefold improvement in energy efficiency compared to CPU-only execution, demonstrating the feasibility of implementing complex SNN architectures on reconfigurable platforms. We also investigate the feasibility of two methods for satellite pose estimation: direct event-based monocular 6D pose estimation and keypoint prediction for indirect pose estimation with a U-Net-type architecture.

These advanced applications demonstrate that the combination of SNNs and event-based sensors constitutes a viable approach for energy-efficient processing in constrained space environments, with potential applications in autonomous navigation, object detection and environmental monitoring.

🚀 Contributions & Results

This work proposes a complete methodology for designing, evaluating and deploying embedded SNNs on neuromorphic hardware:
Definition of a hardware-agnostic energy efficiency metric for comparing SNNs and FNNs
Demonstration of 6× to 8× energy reduction for SNNs at comparable accuracy
Identification of memory access as the dominant energy cost
Extension of QUALIA, an open-source framework for FNN/SNN design, training, quantization and deployment
Integration with SPLEAT, a configurable FPGA-based neuromorphic accelerator
Development of QUALIABENCH, an automated benchmarking and deployment toolchain

🛰 Advanced Applications
Object detection on neuromorphic hardware: 46% faster inference, 3× improvement in energy efficiency vs CPU-only execution

Satellite pose estimation:
Direct monocular 6D pose estimation from events
Keypoint-based pose estimation using a U-Net-like architecture
Spiking Neural Networks, Event-Based Vision, Neuromorphic Computing, Embedded Systems, Energy Efficiency, FPGA Deployment, Bio-Inspired AI, Space Applications

🎥 Video recorded by: @eurds4h

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
PhD Thesis Defense - Jonathan Courtois – Université Côte d’Azur · CNRS · LEAT : Sparsity in SNNs

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Forum Numerica - Benoit Cottereau -  Robust Scene Understanding with Bio-Inspired and Efficient AI

Forum Numerica - Benoit Cottereau - Robust Scene Understanding with Bio-Inspired and Efficient AI

Thesis Defense - Aurora Rossi (Université Côte d'Azur, Centre Inria) - 25/09/2025

Thesis Defense - Aurora Rossi (Université Côte d'Azur, Centre Inria) - 25/09/2025

Thesis Defense - Killian Castillon du Perron (Université Côte d'Azur, Laboratoire i3S) - 21/11/2025

Thesis Defense - Killian Castillon du Perron (Université Côte d'Azur, Laboratoire i3S) - 21/11/2025

Event Cameras: a New Way of Sensing - Davide Scaramuzza - ICCP 2024 Keynote

Event Cameras: a New Way of Sensing - Davide Scaramuzza - ICCP 2024 Keynote

Forum Numerica - Andrea CLEMENTI - Investigating the collective behaviour of elementary agents

Forum Numerica - Andrea CLEMENTI - Investigating the collective behaviour of elementary agents

Computer & Technology Basics Course for Absolute Beginners

Computer & Technology Basics Course for Absolute Beginners

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

РАЗБОР НЕКОТОРЫХ ЗАДАЧ ИЗ ОЛИМПИАДЫ ЭЙЛЕРА, ПЕРВЫЙ ЗАОЧНЫЙ ЭТАП ОТБОРА!

РАЗБОР НЕКОТОРЫХ ЗАДАЧ ИЗ ОЛИМПИАДЫ ЭЙЛЕРА, ПЕРВЫЙ ЗАОЧНЫЙ ЭТАП ОТБОРА!

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Computer Science Terminology

Computer Science Terminology

Что еще заблокируют в России?

Что еще заблокируют в России?

Простейшая разбивка: магистерские и докторские диссертации

Простейшая разбивка: магистерские и докторские диссертации

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Новый Диаметр Москвы — трамваи заменят метро!

Новый Диаметр Москвы — трамваи заменят метро!

Ощущение и восприятие: в чем разница?

Ощущение и восприятие: в чем разница?

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Но почему площадь поверхности сферы в четыре раза больше ее тени?

The Perfect Defense: The Oral Defense of a Dissertation

The Perfect Defense: The Oral Defense of a Dissertation

There Is Something Faster Than Light

There Is Something Faster Than Light

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]