ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Creating a New Column in DataFrame with Conditional rolling().mean()

Creating new column in DataFrame with conditional rolling().mean()

python

python 3.x

pandas

Автор: vlogize

Загружено: 2025-05-28

Просмотров: 0

Описание: Learn how to efficiently create a new column in a DataFrame using Pandas with conditional rolling means to improve performance and reduce processing time.
---
This video is based on the question https://stackoverflow.com/q/65412730/ asked by the user 'Patrick Lehnen' ( https://stackoverflow.com/u/9437380/ ) and on the answer https://stackoverflow.com/a/65412779/ provided by the user 'Dani Mesejo' ( https://stackoverflow.com/u/4001592/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Creating new column in DataFrame with conditional rolling().mean()

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Creating a New Column in DataFrame with Conditional rolling().mean()

Dealing with large data sets can often be a daunting task, especially when you need to calculate rolling means based on certain conditions. If you're working with Pandas and find yourself bogged down by lengthy calculations, you're not alone! The question at hand is how to create a new column in a DataFrame that contains rolling means for specific conditions without sacrificing speed. Let's delve into this common problem and discover an efficient solution.

The Problem: Rolling Mean with Conditions

Imagine you have a DataFrame structured like this:

NameNumberCondition 11Condition 12Condition 12.2Condition 12Condition 21Condition 21.1Condition 21.2Condition 21.3The goal is to compute a rolling mean over the Number column for each Name condition separately. The expected output would have an additional Mean column like the following:

NameNumberMeanCondition 11NaNCondition 121.50Condition 12.22.10Condition 122.10Condition 21NaNCondition 21.11.05Condition 21.21.15Condition 21.31.25While you have attempted to achieve this using loops and separate DataFrames for each condition, there is a more efficient way to accomplish this using Pandas built-in functions. Let’s see how you can simplify your code.

The Solution: Using groupby() and transform()

To create the new Mean column efficiently, you can use Pandas’ groupby() and transform() functions together. Here’s how to implement it:

Step-by-Step Implementation

Group by the 'Name' column: This will allow us to perform calculations within each condition group without mixing data from different conditions.

Transform the 'Number' column: Use the rolling() function followed by mean() to calculate the rolling mean for each group.

Example Code

Here’s a sample code snippet that demonstrates this solution:

[[See Video to Reveal this Text or Code Snippet]]

Output

When the code is executed, the output will look as follows:

[[See Video to Reveal this Text or Code Snippet]]

Why This Method is Efficient

Performance: This approach avoids explicit loops over the different conditions, which can be time-consuming on large datasets.

Simplicity: By utilizing built-in functions, the code becomes cleaner and easier to understand.

Scalability: As your dataset grows, this method remains scalable compared to iterating over unique condition values.

Conclusion

By employing groupby() alongside transform() in Pandas, you can efficiently calculate conditional rolling means within your DataFrame. This method not only improves performance but also enhances the readability and maintainability of your code. If you're looking to optimize your data manipulation processes, this technique is certainly worth considering.

Enjoy coding your way to more efficient data handling!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Creating a New Column in DataFrame with Conditional rolling().mean()

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Add New Columns To Dataframe - Pandas For Machine Learning 6

Add New Columns To Dataframe - Pandas For Machine Learning 6

Python Machine Learning Tutorial (Data Science)

Python Machine Learning Tutorial (Data Science)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Как устроена База Данных? Кластеры, индексы, схемы, ограничения

Как устроена База Данных? Кластеры, индексы, схемы, ограничения

The Ultimate Python Programming Course (Beginner to Advanced)

The Ultimate Python Programming Course (Beginner to Advanced)

Dot products and duality | Chapter 9, Essence of linear algebra

Dot products and duality | Chapter 9, Essence of linear algebra

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Выравнивание — БАЗА быстрого кода! Почему это важно знать | CPU Memory 2

Выравнивание — БАЗА быстрого кода! Почему это важно знать | CPU Memory 2

Introduction to PyTorch

Introduction to PyTorch

"У нас огромные бессмысленные потери! Остановитесь" Военблогеры рассказали о цене наступления России

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]