ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Data Pipeline Hyperparameter Optimization - Alex Quemy

Автор: PyData

Загружено: 2019-03-05

Просмотров: 3143

Описание: PyData Warsaw 2018

It is commonly accepted that about 80% of data scientists time is spent on preparing data, including setting up the proper data pipeline or ETL.
For a large part, the proper configuration of a given data pipeline is the result of the data scientist experience and Subject Matter Expert knowledge, plus a dose of arbitrary decisions. What if most of this work could be automated? Better, is it possible to find some universal pipeline configurations that can work well on a wide range of domains and thus transfer what has been learn on one dataset to another?
In this presentation, we show on a PoC that Sequential Model-Based Optimization techniques can be used to tune data pipeline hyperparameters in order to improve model accuracy. We discuss how to measure if optimal configurations are algorithm-specific or independent, shows that, in the specific case of NLP preprocessing operators, there might exist some kind of generally good configurations, independently of the algorithm or the data.
===
www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Data Pipeline Hyperparameter Optimization - Alex Quemy

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Computer vision challenges in drug discovery - Maciej Hermanowicz

Computer vision challenges in drug discovery - Maciej Hermanowicz

Martin Wistuba: Hyperparameter optimization for the impatient

Martin Wistuba: Hyperparameter optimization for the impatient

Suyash Joshi - Predicting Weather Patterns using Time Series ML | PyData London 25

Suyash Joshi - Predicting Weather Patterns using Time Series ML | PyData London 25

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Richard Liaw: A Guide to Modern Hyperparameters Turning Algorithms | PyData LA 2019

Richard Liaw: A Guide to Modern Hyperparameters Turning Algorithms | PyData LA 2019

Chronos: Time series forecasting in the age of pretrained models

Chronos: Time series forecasting in the age of pretrained models

Как устроена База Данных? Кластеры, индексы, схемы, ограничения

Как устроена База Данных? Кластеры, индексы, схемы, ограничения

Игра, опередившая время на десятилетия  | The Movies 2005

Игра, опередившая время на десятилетия | The Movies 2005

Chris Fonnesbeck - A Beginner's Guide to Variational Inference | PyData Virginia 2025

Chris Fonnesbeck - A Beginner's Guide to Variational Inference | PyData Virginia 2025

Scale and Optimize Data Engineering Pipelines with Best Practices: Modularity and Automated Testing

Scale and Optimize Data Engineering Pipelines with Best Practices: Modularity and Automated Testing

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]