ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

The fight of the devil of Algebra against the angel of Topology (bigger than) in Algebraic Topology

Автор: Central European University

Загружено: 2014-10-28

Просмотров: 1860

Описание: Speaker: András Szűcs

Abstract. Around 1900 Poincaré (the father of Algebraic Topology) wanted to invent a tool for showing that certain nice spaces (so
called manifolds, i.e locally Euclidean spaces were topologically different, i.e. there was no bijection between them, continuous in
both di­rections. His idea was to “count the submanifolds in the space”, in the sense, that two submanifolds should be considered
equivalent if they together bound another submanifold in the space.

Soon he realized that this was a dead end, and turned to an algebraic way of con­structing the tool (the so called homology groups) using free Abelian groups generated by the simplices of the space.

A few decades later Steenrod raised the question: “How far is this algebraic realization from the original geometric idea?”. More precisely: Can we obtain any homology class as a continuos image of a manifold? Rhene Thom (Fields medal 1954) answered this question to the positive in case of coefficients and partially positively for integer coefficients.

But this was only the first step towards the original geometric idea of Poincare. The second step would be to show that we can choose the continuos map as a nice map: an embedding, or at least locally embedding, or as a map having only simple singularities.

Last year with a young English topologist Mark Grant we showed that immersions (i.e. locally embedding maps) are not sufficient for
realizing all Z2-homology classes. Moreover for any finite set of multisingularities the maps having only multisingularities from this
list are insufficient to realize any homology class. In this sense homologies are infinitely complex and the algebraic realization is far away from the original geometric intuition, so the devil won again.

It is still open whether any finite set of local singularities is sufficient for realizing any homology class.

The proof for immersions uses a formula describing the homology class of the singu­larity of a smooth map. The proof for the multisingularities uses the classifying spaces of the singular maps with a given set of allowed multisingularities.

Reference: Grant, Mark; András, Szücs: On realizing homology classes by maps of restricted complexity. Bull. London. Math. Soc. 45 (2013), no.2, 329-34

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The fight of the devil of Algebra against the angel of Topology (bigger than) in Algebraic Topology

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Density of Multivariate Polynomials on Convex and Star like domains

Density of Multivariate Polynomials on Convex and Star like domains

Exotic 4-dimensional manifolds

Exotic 4-dimensional manifolds

Around the Cerny conjecture

Around the Cerny conjecture

How to squeeze low dimensional topology into surfaces

How to squeeze low dimensional topology into surfaces

Vector Fields on Spheres and Clifford Algebras

Vector Fields on Spheres and Clifford Algebras

Partial Differential Equations Related to Fluid Mechanics

Partial Differential Equations Related to Fluid Mechanics

Mr Bean does 'Blind Date' | Comic Relief

Mr Bean does 'Blind Date' | Comic Relief

Задача про надёжный пароль | В интернете опять кто-то неправ #035 | Борис Трушин и Математик Андрей

Задача про надёжный пароль | В интернете опять кто-то неправ #035 | Борис Трушин и Математик Андрей

2025's Biggest Breakthroughs in Mathematics

2025's Biggest Breakthroughs in Mathematics

Комплексные числа. Как мнимое стало реальным // Vital Math

Комплексные числа. Как мнимое стало реальным // Vital Math

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Как работала машина

Как работала машина "Энигма"?

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

The Kakeya conjecture

The Kakeya conjecture

Marking Exam Done by A.I. - Sixty Symbols

Marking Exam Done by A.I. - Sixty Symbols

There Is Something Faster Than Light

There Is Something Faster Than Light

Haar null sets in non-locally compact groups

Haar null sets in non-locally compact groups

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]