ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Physics-Informed Dynamic Mode Decomposition (PI-DMD)

Автор: Steve Brunton

Загружено: 2022-08-26

Просмотров: 22094

Описание: In this video, Peter Baddoo from MIT (www.baddoo.co.uk) explains how physical laws can be integrated into the dynamic mode decomposition.


Title: Physics-informed dynamic mode decomposition (piDMD)
Authors: Peter J. Baddoo, Benjamin Herrmann, Beverley J. McKeon, J. Nathan Kutz, and Steven L. Brunton
Paper: https://arxiv.org/abs/2112.04307
Github: https://github.com/baddoo/piDMD


Abstract:
In this work, we demonstrate how physical principles -- such as symmetries, invariances, and conservation laws -- can be integrated into the dynamic mode decomposition (DMD). DMD is a widely-used data analysis technique that extracts low-rank modal structures and dynamics from high-dimensional measurements. However, DMD frequently produces models that are sensitive to noise, fail to generalize outside the training data, and violate basic physical laws. Our physics-informed DMD (piDMD) optimization, which may be formulated as a Procrustes problem, restricts the family of admissible models to a matrix manifold that respects the physical structure of the system. We focus on five fundamental physical principles -- conservation, self-adjointness, localization, causality, and shift-invariance -- and derive several closed-form solutions and efficient algorithms for the corresponding piDMD optimizations. With fewer degrees of freedom, piDMD models are less prone to overfitting, require less training data, and are often less computationally expensive to build than standard DMD models. We demonstrate piDMD on a range of challenging problems in the physical sciences, including energy-preserving fluid flow, travelling-wave systems, the Schrödinger equation, solute advection-diffusion, a system with causal dynamics, and three-dimensional transitional channel flow. In each case, piDMD significantly outperforms standard DMD in metrics such as spectral identification, state prediction, and estimation of optimal forcings and responses.

This video was produced at the University of Washington

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Physics-Informed Dynamic Mode Decomposition (PI-DMD)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed Machine Learning

Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed Machine Learning

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Maximum Likelihood Estimation (MLE) with Examples

Maximum Likelihood Estimation (MLE) with Examples

Динамическая модовая декомпозиция (теория)

Динамическая модовая декомпозиция (теория)

Top 100 Christmas Songs of All Time 🎄🎁 Top Christmas Music Playlist 🎄🎅 Best Christmas Songs 2026

Top 100 Christmas Songs of All Time 🎄🎁 Top Christmas Music Playlist 🎄🎅 Best Christmas Songs 2026

Data-Driven Control: Balanced Proper Orthogonal Decomposition

Data-Driven Control: Balanced Proper Orthogonal Decomposition

Sparse Identification of Nonlinear Dynamics (SINDy): Sparse Machine Learning Models 5 Years Later!

Sparse Identification of Nonlinear Dynamics (SINDy): Sparse Machine Learning Models 5 Years Later!

Nathan Kutz - The Dynamic Mode Decomposition - A Data-Driven Algorithm

Nathan Kutz - The Dynamic Mode Decomposition - A Data-Driven Algorithm

Моделирование несоответствий с помощью машинного обучения на основе физики

Моделирование несоответствий с помощью машинного обучения на основе физики

Lecture 8: Norms of Vectors and Matrices

Lecture 8: Norms of Vectors and Matrices

Compressed Sensing and Dynamic Mode Decomposition

Compressed Sensing and Dynamic Mode Decomposition

MRI physics overview | MRI Physics Course | Radiology Physics Course #1

MRI physics overview | MRI Physics Course | Radiology Physics Course #1

The Proper Orthogonal Decomposition (Prof. Scott T.M. Dawson)

The Proper Orthogonal Decomposition (Prof. Scott T.M. Dawson)

Physics-Informed Machine Learning, Section 1 - Introduction, Part 1

Physics-Informed Machine Learning, Section 1 - Introduction, Part 1

mrdmd summary kutz

mrdmd summary kutz

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Residual Dynamic Mode Decomposition: A very easy way to get error bounds for your DMD computations

Residual Dynamic Mode Decomposition: A very easy way to get error bounds for your DMD computations

MIT 6.S191: Convolutional Neural Networks

MIT 6.S191: Convolutional Neural Networks

Биология опережает ЛЮБЫЕ машины. Молекулярные моторы живых организмов внутри клеток

Биология опережает ЛЮБЫЕ машины. Молекулярные моторы живых организмов внутри клеток

Koopman Spectral Analysis (Representations)

Koopman Spectral Analysis (Representations)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]