ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Vector Stores Explained — Giving AI Memory with Chroma | Video 22 | LangChain Series

langchain

vector stores

langchain tutorial

chroma vector store

faiss

pinecone

semantic search

ai memory

langchain python

ai embeddings

langchain series

vector database

ai retrieval system

langchain for beginners

semantic similarity

context retrieval

ai reasoning

ai memory explained

langchain chroma example

vector store langchain tutorial

ai with gemini

embedding storage

knowledge retrieval

langchain faiss

ai understanding

Автор: LearningHub

Загружено: 2025-10-14

Просмотров: 26

Описание: Imagine building an AI assistant that can remember everything you’ve ever taught it — from documents, notes, or research papers — and instantly recall the right information whenever you ask.
That’s exactly what Vector Stores make possible. 🧠

In this video, we’ll explore how Vector Stores act as the memory banks of AI systems, helping your assistant retrieve information based on meaning, not just matching words.

💡 What You’ll Learn:

🔹 What are Vector Stores?
They’re specialized databases that store embeddings — the numerical representations of meaning we generated earlier.
Instead of searching text by keywords, vector stores find the closest meaning in high-dimensional vector space.

🔹 Example:
Ask “Who is known as Captain Cool?”
Even if the exact phrase isn’t in your data, a vector store can still find MS Dhoni — because their embeddings are semantically close!

🔹 Why They Matter:
Traditional databases rely on keywords.
Vector stores understand context — enabling semantic search, context retrieval, and reasoning in AI systems.

🔹 Popular Vector Stores:
FAISS – Fast and optimized for similarity search.
Chroma – Lightweight and perfect for local use.
Pinecone – Cloud-based and highly scalable.

In our demo, we’ll use Chroma, storing embeddings persistently so your AI remembers even after restarts.
When a user asks a question, the retriever fetches relevant chunks based on meaning — not exact words — and passes them to the LLM for a context-rich response.

🚀 By the end of this video, you’ll understand:
✅ How vector stores give AI long-term memory
✅ How semantic search works behind the scenes
✅ How to connect Chroma with your embeddings and retrieval pipeline

In short — Vector Stores turn static data into living memory — enabling your AI to think, recall, and reason just like a human librarian with perfect recall.

Complete Playlist:    • LangChain Tutorials  

Generative AI Playlist:    • Generative AI  

LangGrpah Playlist:    • LangGraph Tutorials  

Hands on ML with PyTorch Playlist:    • Hands on ML with PyTorch  

Subscribe for more programming and machine learning related content

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Vector Stores Explained — Giving AI Memory with Chroma | Video 22 | LangChain Series

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]