Day-102 | Ex-7.3 integration using trigonometric identity | Class-12 | Ashu Sir
Автор: Apna School
Загружено: 2025-09-15
Просмотров: 172
Описание:
WhatsApp Group Link:-https://chat.whatsapp.com/E3v6XXmKSYA...
Day-102 | Ex-7.3 Integration using Trigonometric Identities | Class-12 NCERT Solutions | Ashu Sir JAC 2026
📖 Description:
In this video (Day-102), Ashu Sir explains Integration using Trigonometric Identities from Exercise 7.3 Class-12 NCERT Maths step by step.
This method is one of the most important techniques for solving integration problems in Class-12 Board Exams as well as for JEE & other competitive exams.
✨ Topics Covered:
Basics of trigonometric identities in integration
Standard formulas and shortcuts
NCERT Ex-7.3 important questions solved in detail
Board exam & JEE Main level approach
🔔 Stay connected for complete Class-12 Maths NCERT Solutions (Chapter 7 – Integrals) with Ashu Sir (Villain of Maths).
👉 Don’t forget to Like | Share | Subscribe for more such helpful lessons.
#integrals #jac2026 #AshuSir #NCERTSolutions #class12maths #integration #villainofmaths #boardexam #JEE2026 #trigonometry #mathstricks
Solved examples — Integration using trigonometric identities
---
Example 1 —
Write . Let , .
\begin{aligned}
\int \sin^{3}x\,dx &= \int \sin x(1-\cos^{2}x)\,dx
= -\int (1-u^{2})\,du\\
&= -\Big(u-\frac{u^{3}}{3}\Big)+C
= -\cos x+\frac{\cos^{3}x}{3}+C.
\end{aligned}
---
Example 2 —
Use the double-angle identity .
\int \sin^{2}x\,dx = \int \frac{1-\cos2x}{2}\,dx
= \frac{x}{2}-\frac{\sin2x}{4}+C.
---
Example 3 —
Express as . Put , ; note .
\begin{aligned}
\int \sin^{2}x\cos^{3}x\,dx
&= \int \sin^{2}x(1-\sin^{2}x)\cos x\,dx\\
&= \int (u^{2}-u^{4})\,du
= \frac{u^{3}}{3}-\frac{u^{5}}{5}+C\\
&= \frac{\sin^{3}x}{3}-\frac{\sin^{5}x}{5}+C.
\end{aligned}
---
Example 4 —
Use and then .
\begin{aligned}
\int \sin^{2}x\cos^{2}x\,dx
&= \int \frac{1}{4}\sin^{2}2x\,dx
= \frac{1}{4}\int \frac{1-\cos4x}{2}\,dx\\
&= \frac{1}{8}x-\frac{1}{32}\sin4x + C.
\end{aligned}
---
Example 5 — (standard result)
Use integration by parts: write and take .
\begin{aligned}
\int \sec^{3}x\,dx &= \sec x\tan x-\int \tan x\cdot \sec x\tan x\,dx\\
&= \sec x\tan x-\int \sec x\tan^{2}x\,dx\\
&= \sec x\tan x-\int \sec x(\sec^{2}x-1)\,dx\\
&= \sec x\tan x-\int \sec^{3}x\,dx+\int \sec x\,dx.
\end{aligned}
2\int \sec^{3}x\,dx=\sec x\tan x+\int \sec x\,dx.
\boxed{\displaystyle \int \sec^{3}x\,dx=\tfrac{1}{2}\sec x\tan x+\tfrac{1}{2}\ln\big|\sec x+\tan x\big|+C.}
---
Example 6 —
Use .
\int \tan^{2}x\,dx=\int(\sec^{2}x-1)\,dx=\tan x - x + C.
---
If you want, I can:
Turn these into a one-page PDF (ready to attach) and give you a download link, or
Produce 8–10 more Ex-7.3 solved questions (with progressively harder ones) for students, or
Class-11 Playlist
• CLASS-11(2026)
Class-12(CBSE)
• CLASS-12(CBSE)
Class-12(JAC)
• Class-12(JAC)
📌 Follow us on Social Media:
► Instagram: https://www.instagram.com/ashu97092?i...
► Facebook: https://www.facebook.com/share/1AGcbL...
► Instagram: https://www.instagram.com/the_math_em...
#ApnaSchool #AshuSir #Maths #Class11 #Class12 #JEE #NDA #CBSE #JAC #StateBoard #CompetitiveExams #mathempire #mathempiregiridih #ashubhaiyaonlineclasses #villainofmaths
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: