Every finite cyclic group of order n is isomorphic to (Zn, +n) - Chapter 9 - Lecture 7
Автор: Dr. Mrs. Samina S. Boxwala Kale
Загружено: 2020-12-31
Просмотров: 5320
Описание:
In this video, we prove that every finite cyclic group of order n is isomorphic to the group (Zn, +n) i.e. the group of residue classes of integers modulo n w.r.t. addition modulo n.
Link for O(G)=O(a) (finite case):
• Order of a cyclic group is equal to the or...
Link for proof of (Zn, +n) being cyclic:
• Examples of Cyclic Groups - Chapter 3 - Le...
The aim of this channel is to provide a basic course in Group Theory and to give a near classroom experience for learning effectively. Click the link given here to subscribe to my channel: / @grouptheorybydrssbk
Link to the previous lecture
• Every infinite cyclic group is isomorphic ...
Link to the next lecture
• Automorphisms of A Group: Definiton and Ex...
Link to the first lecture of this chapter
• Isomorphism of Groups: Definition & Exampl...
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: