Complete Machine Learning Pipeline for 3D Vision | From Web Scraping to AWS Deployment
Автор: PardesLine
Загружено: 2026-01-24
Просмотров: 51
Описание:
In this 18-minute tutorial, I walk you through a complete end-to-end machine learning pipeline for 3D object classification. We'll build a bottles classifier from scratch, covering every step from data collection to cloud deployment.
What you'll learn:
Web scraping techniques for collecting training data (HTML/CSS parsing)
3D feature extraction using PyVista (feature edges, Dijkstra algorithm)
Model selection with 20+ scikit-learn classifiers
Train/test split strategies and hold-out validation
K-Fold cross-validation for robust model evaluation
AWS deployment for production-ready ML models
Timestamps:
0:00 - Introduction
1:30 - Data Collection with Web Scraping
4:00 - 3D Feature Extraction (PyVista)
7:30 - Model Selection (sklearn classifiers)
10:00 - Train/Test Split & Hold-Out Method
12:30 - K-Fold Cross-Validation
15:00 - AWS Deployment
17:00 - Results & Conclusion
Tools & Libraries:
Python | PyVista | scikit-learn | BeautifulSoup | AWS | Open3D | NumPy | Pandas | Matplotlib
Resources:
GitHub Repository: https://github.com/1904jonathan/Parde...
Related Videos:
• 02 - Feature Extraction from 3D Point Clou...
About this channel:
Applied Machine Learning for 3D Vision - practical tutorials on point cloud processing, 3D object classification, computer vision, and deploying ML models to production.
#MachineLearning #3DVision #Python #PyVista #ScikitLearn #AWS #ComputerVision #PointCloud #MLPipeline #DataScience #DeepLearning #ObjectClassification #WebScraping #CrossValidation #ModelSelection #Tutorial #MLOps
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: