ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Andreas Nuyts, Higher pro-arrows: Towards a model for naturality pretype theory

Автор: HoTTEST

Загружено: 2024-05-02

Просмотров: 462

Описание: Homotopy Type Theory Electronic Seminar Talks, 2024-05-02
https://www.uwo.ca/math/faculty/kapul...

In systems with internal parametricity, we get propagation and preservation of relations through/by all functions for free. In HoTT, we get preservation of equivalences by all functions for free. In directed type theory, we get preservation of morphisms by all (covariant) functions for free.
None of these three properties by itself is satisfactory: if we weaken equivalences or morphisms to relations, we lose their computational behaviour. If we want to rely on preservation of non-invertible morphisms, we need our functions to be covariant. And finally, simply not every morphism/relation is an equivalence.
We set out to develop a type system that has all three preservation properties in an interactive manner, so that we can preserve isomorphisms when available, morphisms when covariant, and relations as a last resort. Such a system should provide us with functoriality (fmap), parametricity and naturality proofs for free. I call such a system "Naturality Type Theory".
In this first step, I consider Naturality *Pre*type Theory: I defer all considerations of fibrancy to intuition and future work. In particular, I do not yet worry too much about the specifics of composition of and transport along morphisms.
By instantiating parametrized systems such as Multimod(e/al) Type Theory (MTT) and the Modal Transpension System (MTraS), we can moreover separate concerns and only worry about the presheaf model at every mode, and the modalities that we can model as adjunctions between these presheaf models, leaving syntactic matters to research on MTT and MTraS.
The presheaf models are designed to accommodate yet-to-be-defined higher pro-arrow equipments, and can be invented in three ways: (1) as a higher-dimensional version of pro-arrow equipments, (2) as a heterogenization of Tamsamani & Simpson's model of higher category theory, and (3) as a directification of Degrees of Relatedness.
In this talk, after motivating the subject, I intend to introduce the main ideas and then spiral towards the technical details, starting from the three existing settings/structures/models mentioned above.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Andreas Nuyts, Higher pro-arrows: Towards a model for naturality pretype theory

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Evan Cavallo, Why some cubical models don't present spaces

Evan Cavallo, Why some cubical models don't present spaces

Benedikt Ahrens, A type theory for comprehension categories

Benedikt Ahrens, A type theory for comprehension categories

26.01.23, Eero Raty, Recent advances in cut-problems on graphs (Lecture 5)

26.01.23, Eero Raty, Recent advances in cut-problems on graphs (Lecture 5)

Intensionality, Invariance, and Univalence, Steve Awodey

Intensionality, Invariance, and Univalence, Steve Awodey

Mario Carneiro, Lean4Lean: Towards a Verified Typechecker for Lean, in Lean

Mario Carneiro, Lean4Lean: Towards a Verified Typechecker for Lean, in Lean

Isospin Symmetry Breaking and Nuclear Beta Decay

Isospin Symmetry Breaking and Nuclear Beta Decay

Mitchell Riley, Tiny types and cubical type theory

Mitchell Riley, Tiny types and cubical type theory

We still don't understand magnetism

We still don't understand magnetism

Grant Sanderson: 3Blue1Brown and the Beauty of Mathematics | Lex Fridman Podcast #64

Grant Sanderson: 3Blue1Brown and the Beauty of Mathematics | Lex Fridman Podcast #64

Reid Barton, Directed aspects of condensed type theory

Reid Barton, Directed aspects of condensed type theory

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Greg Langmead, Discrete differential geometry in homotopy type theory

Greg Langmead, Discrete differential geometry in homotopy type theory

Jonathan Weinberger, Directed univalence and the Yoneda embedding for synthetic ∞-categories

Jonathan Weinberger, Directed univalence and the Yoneda embedding for synthetic ∞-categories

Jon Sterling, Is it time for a new proof assistant?

Jon Sterling, Is it time for a new proof assistant?

Calming your Nervous System | 1 hour handpan music | Malte Marten

Calming your Nervous System | 1 hour handpan music | Malte Marten

Тоннель под Ла-Маншем | Потрясающие инженерные решения, лежащие в его основе

Тоннель под Ла-Маншем | Потрясающие инженерные решения, лежащие в его основе

Беззубчатые шестерни развивают гораздо больший крутящий момент, чем обычные, вот почему. Циклоида...

Беззубчатые шестерни развивают гораздо больший крутящий момент, чем обычные, вот почему. Циклоида...

Джеффри Эпштейн прямо спросил: «Как давно вас привлекают несовершеннолетние девочки?» | APT

Джеффри Эпштейн прямо спросил: «Как давно вас привлекают несовершеннолетние девочки?» | APT

Уборщик испугался | Агрессивный бодибилдер против 32-килограммовой швабры в спортзале

Уборщик испугался | Агрессивный бодибилдер против 32-килограммовой швабры в спортзале

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]