ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

"Honey, I Deep-Shrunk the Sample Covariance Matrix!" by Dr. Erk Subasi

finance

quantitative finance

risk

risk analysis

math

statistics

algorithms

algorithmic trading

Автор: Quantopian

Загружено: 2017-03-08

Просмотров: 3564

Описание: Talk by Dr. Erk Subasi, Quant Portfolio Manager at ‎Limmat Capital Alternative Investments AG. From QuantCon NYC 2016.

Since the seminal work of Markowitz, covariance estimates has prime importance for portfolio construction. Running naive portfolio optimizations on sample covariance estimates can be hazardous to the health of one's portfolio though. The recent developments in machine learning, in particular in deep-learning, suggest that high-level abstractions and deep architectural representations are key for success when dealing with non-linear, noisy real-life data. Motivated by this, here we demonstrate a novel form of robust-covariance estimation based on the ideas borrowed from deep-learning domain. In a pedagogical setting, we will show how to use TensorFlow, a recently open-sourced deep-learning library by Google, to build a robust-covariance estimator via denoising autoencoders.

The slides for this presentation can be found at https://www.slideshare.net/Quantopian....

To learn more about Quantopian, visit us at: https://www.quantopian.com.

Disclaimer
Quantopian provides this presentation to help people write trading algorithms - it is not intended to provide investment advice.

More specifically, the material is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory or other services by Quantopian.

In addition, the content neither constitutes investment advice nor offers any opinion with respect to the suitability of any security or any specific investment. Quantopian makes no guarantees as to accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
"Honey, I Deep-Shrunk the Sample Covariance Matrix!" by Dr. Erk Subasi

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

June Jazz: Sweet Jazz & Elegant Bossa Nova to relax, study and work effectively

June Jazz: Sweet Jazz & Elegant Bossa Nova to relax, study and work effectively

What is COVARIANCE? What is CORRELATION? Detailed video!

What is COVARIANCE? What is CORRELATION? Detailed video!

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

Chillout 2025 24/7 Live Radio • Summer Tropical House & Deep House Chill Music Mix by We Are Diamond

Chillout 2025 24/7 Live Radio • Summer Tropical House & Deep House Chill Music Mix by We Are Diamond

Covariance matrix shrinkage: Ledoit and Wolf (2004)

Covariance matrix shrinkage: Ledoit and Wolf (2004)

"Statistics: The Missing Link between Technical Analysis and Algorithmic Trading" by Manish Jalan

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Computers Are Just Rocks Doing Math

Computers Are Just Rocks Doing Math

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]