ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe

Автор: Timothy Nguyen

Загружено: 2024-02-02

Просмотров: 14184

Описание: Richard Borcherds is a mathematician and professor at University of California Berkeley known for his work on lattices, group theory, and infinite-dimensional algebras. His numerous accolades include being awarded the Fields Medal in 1998 and being elected a fellow of the American Mathematical Society and the National Academy of Sciences.

#math #maths #stringtheory #grouptheory

Patreon (bonus materials + video chat):
  / timothynguyen  

In this episode, Richard and I give an overview of Richard's most famous result: his proof of the Monstrous Moonshine conjecture relating the monster group on the one hand and modular forms on the other. A remarkable feature of the proof is that it involves vertex algebras inspired from elements of string theory. Some familiarity with group theory and representation theory are assumed in our discussion.

I. Introduction
00:25 : Biography
02:51 : Success in mathematics
04:04 : Monstrous Moonshine overview and John Conway
09:44 : Technical overview

II. Group Theory
11:31 : Classification of finite-simple groups + history of the monster group
18:03 : Conway groups + Leech lattice
22:13 : Why was the monster conjectured to exist + more history
28:43 : Centralizers and involutions
32:37 : Griess algebra

III. Modular Forms
36:42 : Definitions
40:06 : The elliptic modular function
48:58 : Subgroups of SL_2(Z)

IV. Monstrous Moonshine Conjecture Statement
57:17 : Representations of the monster
59:22 : Hauptmoduls
1:03:50 : Statement of the conjecture
1:07:06 : Atkin-Fong-Smith's first proof
1:09:34 : Frenkel-Lepowski-Meurman's work + significance of Borcherd's proof

V. Sketch of Proof
1:14:47 : Vertex algebra and monster Lie algebra
1:21:02 : No ghost theorem from string theory
1:25:24 : What's special about dimension 26?
1:28:33 : Monster Lie algebra details
1:32:30 : Dynkin diagrams and Kac-Moody algebras
1:43:21 : Simple roots and an obscure identity
1:45:13 : Weyl denominator formula, Vandermonde identity
1:52:14 : Chasing down where modular forms got smuggled in
1:55:03 : Final calculations

VI. Epilogue
1:57:53 : Your most proud result?
2:00:47 : Monstrous moonshine for other sporadic groups?
2:02:28 : Connections to other fields. Witten and black holes and mock modular forms.

Further reading:
V Tatitschef. A short introduction to Monstrous Moonshine. https://arxiv.org/pdf/1902.03118.pdf

Twitter:
@iamtimnguyen

Webpage:
http://www.timothynguyen.org

Apple Podcasts:
https://podcasts.apple.com/us/podcast...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

How to construct the Leech lattice

How to construct the Leech lattice

Why Do Sporadic Groups Exist?

Why Do Sporadic Groups Exist?

Ричард Борчердс: Группа монстров, Теория струн, Самогон

Ричард Борчердс: Группа монстров, Теория струн, Самогон

Group theory, abstraction, and the 196,883-dimensional monster

Group theory, abstraction, and the 196,883-dimensional monster

The Universe Speaks in Numbers: Robbert Dijkgraaf and Edward Witten in Conversation

The Universe Speaks in Numbers: Robbert Dijkgraaf and Edward Witten in Conversation

Monstrous moonshine

Monstrous moonshine

The Langlands Programme - Andrew Wiles

The Langlands Programme - Andrew Wiles

Weird spaces where π = 4

Weird spaces where π = 4

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic | The Cartesian Cafe w/ Timothy Nguyen

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic | The Cartesian Cafe w/ Timothy Nguyen

The Moonshine Conjecture and Advice for Math Students | Richard Borcherds | TEDxNiendorf

The Moonshine Conjecture and Advice for Math Students | Richard Borcherds | TEDxNiendorf

Frank Calegari: 30 years of modularity: number theory since the proof of Fermat's Last Theorem

Frank Calegari: 30 years of modularity: number theory since the proof of Fermat's Last Theorem

Simple groups, Lie groups, and the search for symmetry I  | Math History | NJ Wildberger

Simple groups, Lie groups, and the search for symmetry I | Math History | NJ Wildberger

Monster Group (John Conway) - Numberphile

Monster Group (John Conway) - Numberphile

Counting points on the E8 lattice with modular forms (theta functions) | #SoME2

Counting points on the E8 lattice with modular forms (theta functions) | #SoME2

Серр: Конечные группы, вчера и сегодня

Серр: Конечные группы, вчера и сегодня

Jeffrey Harvey - From Moonshine to Black Holes: Number Theory in Math and Physics (Sept 6, 2017)

Jeffrey Harvey - From Moonshine to Black Holes: Number Theory in Math and Physics (Sept 6, 2017)

Brian Keating’s Losing the Nobel Prize Makes a Good Point but … | Ethan Siegel &Timothy Nguyen

Brian Keating’s Losing the Nobel Prize Makes a Good Point but … | Ethan Siegel &Timothy Nguyen

L'œuvre d'Alexandre Grothendieck par Pierre Deligne (French with English subtitles)

L'œuvre d'Alexandre Grothendieck par Pierre Deligne (French with English subtitles)

Эндрю Уайлс: Великая теорема Ферма: абелев и неабелев подходы

Эндрю Уайлс: Великая теорема Ферма: абелев и неабелев подходы

Sporadic groups

Sporadic groups

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]