Bifurcations in 2D, Part 4: Global Bifurcations, Limit Cycle Creation | Homoclinic Bifurcation
Автор: Dr. Shane Ross
Загружено: 2021-04-08
Просмотров: 5482
Описание:
In two-dimensional systems, there are four common ways in which limit cycles are created or destroyed. The Hopf bifurcation is the best known and occurs 'locally' in phase space, in the small neighborhood of a fixed point. The other three involve large regions of the phase plane and are therefore called 'global' bifurcations.
Chapters
0:00 Introduction
0:51 saddle-node bifurcation of cycles, or fold bifurcation
9:11 saddle-node infinite-period bifurcation on a cycle, or SNIPER
18:07 connection with heartbeat or nerve firing time-series
22:00 homoclinic bifurcation, or saddle-loop
26:11 universal behavior of bifurcations of cycles, a summary of the amplitude and period of the resulting limit cycles as a function of the distance of the parameter from the critical value
► Next, quasi-periodicity, phase-locking, and dynamics on the torus
• Action-Angle Variables in Hamiltonian Syst...
► From 'Nonlinear Dynamics and Chaos' (online course).
Playlist https://is.gd/NonlinearDynamics
► Bifurcations in 2D
Zero eigenvalue bifurcations • Bifurcations in 2D, Part 1: Introduction, ...
Hopf bifurcation theory • Bifurcations in 2D, Part 2: Hopf Bifurcati...
Hopf physical examples • Bifurcations in 2D, Part 3: Hopf Bifurcati...
Bifurcations of limit cycles • Bifurcations in 2D, Part 4: Global Bifurca...
► Bifurcations in 1D (the zero eigenvalue bifurcations)
Saddle-node • Bifurcations Part 1, Saddle-Node Bifurcation
Trans-critical • Bifurcations Part 2- Transcritical Bifurca...
Pitchfork • Bifurcations Part 3- Pitchfork Bifurcation
Robustness • Bifurcations Part 4- Robustness of Bifurca...
► Additional background on 2D dynamical systems
Phase plane introduction • Phase Portrait Introduction- Pendulum Example
Classifying 2D fixed points • Classifying Fixed Points of 2D Systems - L...
Gradient systems • Gradient Systems - Nonlinear Differential ...
Index theory • Index Theory for Dynamical Systems, Part 1...
Limit cycles • Limit Cycles, Part 1: Introduction & Examples
Averaging theory • Averaging Theory for Weakly Nonlinear Osci...
► Advanced lecture on Hopf bifurcations
• Hopf Bifurcation Example- Normal Forms for...
► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
Subscribe https://is.gd/RossLabSubscribe
► Follow me on Twitter
/ rossdynamicslab
► Make your own phase portrait
https://is.gd/phaseplane
► Course lecture notes (PDF)
https://is.gd/NonlinearDynamicsNotes
► Courses and Playlists by Dr. Ross
📚Attitude Dynamics and Control
https://is.gd/SpaceVehicleDynamics
📚Nonlinear Dynamics and Chaos
https://is.gd/NonlinearDynamics
📚Hamiltonian Dynamics
https://is.gd/AdvancedDynamics
📚Three-Body Problem Orbital Mechanics
https://is.gd/SpaceManifolds
📚Lagrangian and 3D Rigid Body Dynamics
https://is.gd/AnalyticalDynamics
📚Center Manifolds, Normal Forms, and Bifurcations
https://is.gd/CenterManifolds
References:
Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 8: Bifurcations Revisited
Arnaldo Rodriguez-Gonzalez, Strogatz's example of an infinite-period bifurcation,
• Strogatz's example of an infinite-period b...
Arnaldo Rodriguez-Gonzalez, Strogatz's example of a homoclinic bifurcation,
• Strogatz's example of a homoclinic bifurca...
cardiac stable focus unstable focus supercritical subcritical topological equivalence genetic switch structural stability Andronov-Hopf Andronov-Poincare-Hopf small epsilon method of multiple scales two-timing Van der Pol Oscillator Duffing oscillator nonlinear oscillators nonlinear oscillation nerve cells driven current nonlinear circuit glycolysis biological chemical oscillation adenosine diphosphate ADP fructose Liapunov gradient systems passive dynamic biped walker Tacoma Narrows bridge collapse Charles Conley index theory gradient system autonomous on the plane phase plane are introduced 2D ordinary differential equations equations dimensions phase space Poincare Strogatz graphical method Fixed Point Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field Two-Dimensional 2-dimensional Functions Hamiltonian Hamilton streamlines weather vortex dynamics point vortices pendulum Newton's Second Law Conservation of Energy topology Verhulst
#NonlinearDynamics #DynamicalSystems #Bifurcation #Hopf #HopfBifurcation #NonlinearOscillators #AveragingTheory #LimitCycle #Oscillations #nullclines #RelaxationOscillations #VanDerPol #VanDerPolOscillator #LimitCycles #VectorFields #topology #IndexTheory #EnergyConservation #Hamiltonian #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #PopulationBiology #FixedPoint #DifferentialEquations #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CuspBifurcation #CriticalPoint #buckling #PitchforkBifurcation #robust #StructuralStability #DifferentialEquations #dynamics #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Poincare #Strogatz #Wiggins #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #NonlinearODEs #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #PopulationGrowth #DynamicalSystems #PopulationDynamics #Population #Logistic #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: