From OCR to RAG: Build an Intelligent Document Assistant with LLMs
Автор: Abdul Rahman
Загружено: 2026-01-29
Просмотров: 19
Описание:
🔍 RAG-Powered OCR & Intelligent Document Q&A System | GenAI Project Demo
In this video, I showcase a RAG (Retrieval-Augmented Generation) powered OCR and Document Q&A system built using a clean 3-file modular architecture. This system extracts text from images using OCR, processes documents, generates embeddings, stores them in a vector database, and enables intelligent question answering using LLMs.
This project demonstrates how Generative AI, OCR, embeddings, and vector databases work together to build real-world AI applications.
🚀 Key Features
OCR-based text extraction from images
Semantic text chunking and embeddings
Vector database using ChromaDB
RAG-based question answering
Multiple LLM support (Grok, Gemini, Llama, DeepSeek)
Streamlit-based interactive UI
Configurable LLM parameters (temperature, top-p, tokens)
Modular and scalable architecture
🧠 Tech Stack
Python
Streamlit
ChromaDB
Sentence Transformers
OpenRouter API
HuggingFace Embeddings
LLMs: Grok, Gemini, Llama, DeepSeek
🏗️ System Architecture
Image Upload → OCR Extraction
Text Chunking → Embedding Generation
Vector Storage → Semantic Search
Context Retrieval → LLM Response
Answer with Sources
💡 Use Cases
Student learning assistant
Invoice and document analysis
Contract and legal document review
Research paper analysis
Technical documentation Q&A
🎯 Why This Project Matters
This project demonstrates how to build enterprise-ready GenAI applications using RAG architecture. It solves real-world problems like document understanding, knowledge retrieval, and AI-powered search, making it highly relevant for modern AI systems.
🔗 Source Code and Setup
Project structure: Modular 3-file architecture
OCR + RAG + Vector DB + LLM integration
Fully configurable and extensible
GitHub Repo: https://github.com/rabdul585/GEN_AI_Apps/t...
📌 Tags / Keywords
#RAG #GenerativeAI #OCR #LLM #Python #LangChain #ChromaDB #AIProject #MachineLearning #GenAI #DocumentAI #Streamlit #OpenRouter
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: