ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Fixing Typos & Preparing Data for Missing Value Imputation with Python

Автор: Savila Education

Загружено: 2025-03-12

Просмотров: 3

Описание: 8_Fixing Typos & Preparing Data for Missing Value Imputation with Python

Dataset and code: www.savilagames.io

🔹 Note: This video is part of a complete step-by-step tutorial. To get the full context and follow along smoothly, please watch the playlist in order.

Summary:

Handling missing data is a crucial step in data analysis, but blindly dropping missing values can lead to loss of important information. In this lesson, we explore three ways to handle missing data using Pandas:

1. Drop missing values (not always ideal).
2. Fill missing values with zeros or averages.
3. Use smart imputation by leveraging available data.

We then apply a more advanced approach: reconstructing missing sales values using SKU-level transactions from the same year.
However, before doing this, we need to clean up SKU names, which contain typos and inconsistent formats (e.g., extra symbols like ‘@’ or ‘_FR’). We create a Python function to standardize SKUs and apply it to our dataset. This ensures accurate grouping and calculations, setting the stage for effective data imputation in the next lesson.

----------
Step-by-Step:

1️⃣ Check Missing Values 🕵️

Analyze the missing values in your dataset.
Understand how much data you would lose if you drop them.

2️⃣ ExploreMissing Value Strategies 💡

Option 1: Drop rows with missing values (dropna()).
Option 2: Fill missing values with zeros or averages (fillna()).
Option 3 (Best Approach): Estimate missing sales from other transactions using the SKU price and quantity.

3️⃣ Identify Typos in SKUs 🧐

Examine the unique SKU names.
Find patterns and duplicates caused by typos (e.g., SKU6001, @SKU6001, SKU6001_FR).

4️⃣ Filter for Specific SKUs 📊

Use .str.contains() to filter and inspect rows with a specific SKU pattern.
List out all versions of a particular SKU to identify errors.

5️⃣ Create a Cleaning Function 🧼

Build a Python function to fix typos by removing unwanted characters (e.g., @, _FR).
Test the function with different variations of the SKU.

6️⃣ Apply the Function to the Dataset 🚀

Use .apply() to clean the entire SKU column.
Verify that the unique SKU count decreases, indicating successful cleanup.

7️⃣ Confirm Data is Clean ✅

Rerun unique SKU checks to ensure only the correct versions remain.
Now your data is ready for accurate imputation!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Fixing Typos & Preparing Data for Missing Value Imputation with Python

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]