ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

TUM AI Lecture Series - The multimodal future: Why visual representation still matters (Saining Xie)

Автор: Matthias Niessner

Загружено: 2025-03-17

Просмотров: 4796

Описание: Abstract: In this talk, we’ll look at how visual representation continues to play a key role in shaping the multimodal future. I’ll share some of our recent work on vision-centric generative AI and how it’s helping us better understand and create visual content, like images and videos. We’ll dive into the latest advancements, such as multimodal large language models for visual understanding and diffusion transformers for visual generation, and explore how these areas are deeply connected. By tackling the challenges and opportunities in building and evaluating these capabilities, we’ll highlight why visual representation learning is still an unsolved and critical problem. Finally, we’ll discuss why these developments are so important—not just for practical applications but also as essential steps toward building robust visual intelligence that can truly engage with the sensory-rich world we live in.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
TUM AI Lecture Series - The multimodal future: Why visual representation still matters (Saining Xie)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

TUM AI Lecture Series - Building generative world models: progress and challenges (Ruiqi Gao)

TUM AI Lecture Series - Building generative world models: progress and challenges (Ruiqi Gao)

GPT-4o, AI overviews and our multimodal future

GPT-4o, AI overviews and our multimodal future

TUM AI Lecture Series - The 3D Gaussian Splatting Adventure: Past, Present, Futur (George Drettakis)

TUM AI Lecture Series - The 3D Gaussian Splatting Adventure: Past, Present, Futur (George Drettakis)

HKU AI Forum 2025 - Invited Talk 5 - Prof Saining Xie

HKU AI Forum 2025 - Invited Talk 5 - Prof Saining Xie

TUM AI Lecture Series - FLUX: Flow Matching for Content Creation at Scale (Robin Rombach)

TUM AI Lecture Series - FLUX: Flow Matching for Content Creation at Scale (Robin Rombach)

TUM AI Lecture Series - Radiant Foam: Real-Time Differentiable Ray Tracing (Andrea Tagliasacchi)

TUM AI Lecture Series - Radiant Foam: Real-Time Differentiable Ray Tracing (Andrea Tagliasacchi)

AI, Machine Learning, Deep Learning and Generative AI Explained

AI, Machine Learning, Deep Learning and Generative AI Explained

Не создавайте агентов, а развивайте навыки – Барри Чжан и Махеш Мураг, Anthropic

Не создавайте агентов, а развивайте навыки – Барри Чжан и Махеш Мураг, Anthropic

TUM AI Lecture Series - Dream Machine: Emergent Capabilities from Video Models (Jiaming Song)

TUM AI Lecture Series - Dream Machine: Emergent Capabilities from Video Models (Jiaming Song)

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 1 - Generative AI with SDEs

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 1 - Generative AI with SDEs

Introduction to Generative AI

Introduction to Generative AI

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

What's the future for generative AI? - The Turing Lectures with Mike Wooldridge

What's the future for generative AI? - The Turing Lectures with Mike Wooldridge

MIT 6.S191: Deep Generative Modeling

MIT 6.S191: Deep Generative Modeling

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 01 - Generative AI with SDEs

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 01 - Generative AI with SDEs

TUM AI Lecture Series - Symmetries in Inference and Learning (Max Welling)

TUM AI Lecture Series - Symmetries in Inference and Learning (Max Welling)

Stanford CS25: V4 I From Large Language Models to Large Multimodal Models

Stanford CS25: V4 I From Large Language Models to Large Multimodal Models

The Turing Lectures: The future of generative AI

The Turing Lectures: The future of generative AI

MIT Introduction to Deep Learning | 6.S191

MIT Introduction to Deep Learning | 6.S191

Stanford CS224N NLP with Deep Learning | 2023 | Lecture 16 - Multimodal Deep Learning, Douwe Kiela

Stanford CS224N NLP with Deep Learning | 2023 | Lecture 16 - Multimodal Deep Learning, Douwe Kiela

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]