Training Data vs Test Data Explained | Machine Learning Fundamentals
Автор: CloudWolf AWS
Загружено: 2026-02-13
Просмотров: 12
Описание:
If you want to learn more check our AWS courses:
👉 https://www.cloudwolf.com/ultimate-aw...
👉 https://www.cloudwolf.com/solution-ar...
— Get AWS certified in no time.
🔔 Don’t forget to subscribe for more AWS certification prep content and tutorials!
/ YouTube @CloudWolfAWSA
/ LinkedIn @CloudWolfAWS
/ Instagram @CloudWolfAWS
In this tutorial, we explain one of the most important concepts in Machine Learning: training data vs test data.
You’ll learn why we split datasets (commonly 80/20), how models are trained on historical data, and how test data helps evaluate whether a model can generalize to unseen examples — a key concept for the AWS exam.
🔹 Key Topics Covered:
What is training data?
What is test data?
Why we split data (commonly 80% / 20%)
Preventing overfitting
Evaluating model performance on unseen data
Comparing predicted vs actual values
Why test data must remain unseen during training
Exam tip: training vs inference vs evaluation
📘 Perfect for:
AWS exam takers, ML beginners, data analysts, and anyone learning the fundamentals of model evaluation.
All of our courses available at: https://www.cloudwolf.com/
⏱️ Timestamps
00:00 – Intro: Why training vs test data matters
00:25 – Example: predicting secondhand car prices
00:55 – Collecting historical data
01:20 – Splitting data (80% training, 20% test)
01:50 – Training the model
02:15 – Why we need test data
02:45 – Evaluating predictions vs actual values
03:15 – Generalization & overfitting
03:30 – Summary
🧠 Hashtags
#MachineLearning #TrainingData #TestData #MLFundamentals
#AWSExamPrep #CloudWolf #AIConcepts #ModelEvaluation
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: