ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

DDPS | Neural Differentiable Physics

Автор: Inside Livermore Lab

Загружено: 2024-10-02

Просмотров: 1324

Описание: DDPS | “Neural Differentiable Physics: Unifying Numerical PDEs and Deep Learning for Data-Augmented Computational Physics”
DDPS Talk date: September 20th, 2024
Speaker: Jianxun Wang (University of Notre Dame, https://sites.nd.edu/jianxun-wang/)
Description: Predictive modeling and simulation are essential for understanding, predicting, and controlling complex physical processes across many engineering disciplines. However, traditional numerical models, which are based on first principles, face significant challenges, especially for complex systems involving multiple interacting physics across a wide range of spatial and temporal scales. (1) A primary obstacle stems from our often-incomplete understanding of the underlying physics, which results in inadequate mathematical models that fail to accurately capture system behavior. (2) Additionally, the high computational demands of traditional solvers represent another substantial barrier, especially when real-time control or many repeated model queries are required, as in design optimization, inference, and uncertainty quantification. Fortunately, the continual evolution of sensing technology and the exponential increase in data availability have opened new avenues for the development of data-driven computational modeling frameworks. Bolstered by advanced machine learning and GPU computing techniques, these models hold the promise of greatly enhancing our predictive capabilities, effectively tackling the challenges posed by traditional numerical models. While data science and machine learning offer novel methods for computational mechanics models, challenges persist, such as the need for extensive data, limited generalizability, and lack of interpretability. Addressing existing challenges for predictive modeling issues requires innovative computational methods that integrate advanced machine learning techniques with physics principles. This talk will introduce some of our efforts along this direction, spotlighting the Neural Differentiable Physics, a novel SciML framework unifying classic numerical PDE solvers and advanced deep learning models for computational modeling of complex physical systems. Our approach centers on the integration of numerical PDE operators into neural architectures, enabling the fusion of prior knowledge of known physics, multi-resolution data, numerical techniques, and deep neural networks through differentiable programming. The way for integrating physics into the deep learning model represents a novel departure from existing SciML frameworks, such as Physics-Informed Neural Networks (PINNs). By combining the strengths of known physical principles and established numerical techniques with cutting-edge deep learning and AI technology, this innovative framework promises to inaugurate a new era in the understanding and modeling of complex physical systems, with far-reaching implications for science and engineering applications.
Bio: Dr. Jian-Xun Wang is the Robert W. Huether Collegiate Associate Professor of Aerospace Engineering in the Department of Aerospace and Mechanical Engineering at the University of Notre Dame. He earned his Ph.D. in Aerospace Engineering from Virginia Tech in 2017 and worked as a Postdoctoral Scholar at UC Berkeley before joining Notre Dame in 2018. Dr. Wang has a multidisciplinary research background that spans Scientific Machine Learning, Data Assimilation, Bayesian Computing, Uncertainty Quantification, and Computational Fluid Dynamics. His research focuses particularly on the in-depth integration of advanced AI/ML techniques with physics-based mathematical models and classic numerical methods, aiming to revolutionize the field of computational modeling in the era of "big data" and significantly enhance the predictive simulation capabilities. He has led research projects sponsored by multiple agencies, including NSF, ONR, AFSOR, DARPA, Google, and others. Dr. Wang is a recipient of the 2021 NSF CAREER Award and the 2023 ONR YIP Award. He is also an elected vice chair of the US Association for Computational Mechanics (USACM) Technical Thrust Area on Data-Driven Modeling.

DDPS webinar: https://www.librom.net/ddps.html
💻 LLNL News: https://www.llnl.gov/news
📲 Instagram:   / livermore_lab  
🤳 Facebook:   / livermore.lab  
🐤 Twitter:   / livermore_lab  

About LLNL: Lawrence Livermore National Laboratory has a mission of strengthening the United States’ security through development and application of world-class science and technology to: 1) enhance the nation’s defense, 2) reduce the global threat from terrorism and weapons of mass destruction, and 3) respond with vision, quality, integrity and technical excellence to scientific issues of national importance. Learn more about LLNL: https://www.llnl.gov/.
IM release number is: LLNL-VIDEO-869779

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
DDPS | Neural Differentiable Physics

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

DDPS | “Data-driven techniques for analysis of turbulent flows”

DDPS | “Data-driven techniques for analysis of turbulent flows”

DDPS | The Nexus of Machine Learning, Physics-based Modeling, and Uncertainty Quantification

DDPS | The Nexus of Machine Learning, Physics-based Modeling, and Uncertainty Quantification

DDPS |

DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

КОЛМАНОВСКИЙ:

КОЛМАНОВСКИЙ: "Это просто чудо". Где "проваливается" ИИ, что не так с ядом из кожи лягушки, азарт

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Can the US challenge China’s dominance in critical minerals? | Counting the Cost

Can the US challenge China’s dominance in critical minerals? | Counting the Cost

Kryptokłopoty Karola Nawrockiego. Komentują Wieliński i Czuchnowski | Gazeta wyborcza

Kryptokłopoty Karola Nawrockiego. Komentują Wieliński i Czuchnowski | Gazeta wyborcza

The University of Notre Dame - Master of Counselling

The University of Notre Dame - Master of Counselling

157. Как складываются спины в квантовой механике? Теория групп и законы сохранения НЕпростым языком.

157. Как складываются спины в квантовой механике? Теория групп и законы сохранения НЕпростым языком.

ИИ-агенты — кошмар для безопасности? Разбираемся с OpenClaw

ИИ-агенты — кошмар для безопасности? Разбираемся с OpenClaw

Илон Маск (свежее): xAI и SpaceX, прогресс ИИ, Grok, лунная база, другое

Илон Маск (свежее): xAI и SpaceX, прогресс ИИ, Grok, лунная база, другое

Perspectives: Roy Foster in Conversation with Fintan O’Toole

Perspectives: Roy Foster in Conversation with Fintan O’Toole

ЛИПСИЦ: ИНТЕРВЬЮ

ЛИПСИЦ: ИНТЕРВЬЮ "ПЕРВОМУ РАДИО (ИЗРАИЛЬ)" 16.02.2026

Trump

Trump "murem" za Orbanem. Prof. Góralczyk o sekstaśmach i "rosyjskich metodach" na Węgrzech

November 2022 Master of Global Affairs Info Session

November 2022 Master of Global Affairs Info Session

Marek Meissner - Strefa zamknięta pod kontrolą Chin.

Marek Meissner - Strefa zamknięta pod kontrolą Chin. "Dla Rosjan zostanie tylko gnój"

🔴 NOCNA ZMIANA | KAMILA BIEDRZYCKA & DR MIROSŁAW OCZKOŚ

🔴 NOCNA ZMIANA | KAMILA BIEDRZYCKA & DR MIROSŁAW OCZKOŚ

УХТОМСКИЙ - физиолог ДОКАЗАЛ, что МОЗГ сам выбирает РЕАЛЬНОСТЬ. ОДИН против всех !

УХТОМСКИЙ - физиолог ДОКАЗАЛ, что МОЗГ сам выбирает РЕАЛЬНОСТЬ. ОДИН против всех !

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]