ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Andrew Montalenti: Beating Python's GIL to Max Out Your CPUs

Автор: PyData

Загружено: 2015-12-04

Просмотров: 10344

Описание: PyData NYC 2015

Among the #1 complaints of Python in a data analysis context is the presence of the Global Interpreter Lock, or GIL. At its core, it means that a given Python program cannot easily utilize more than one core of a multi-core machine to do computation in parallel. However, fear not! To beat the GIL, you just need to be willing to adopt a little magic -- and this talk will tell you how.

Beating Python's Global Interpreter Lock starts with a recognition of a searing reality: that no matter how many multi-core machines exist, most CPU-heavy computation tasks will max out even the cores available on a given large box. Once you come to terms with this fact, you realize what you actually want isn't multi-core computation, but multi-core / multi-node computation. That is, cluster-scale computing.

To illustrate multi-core vs multi-node, we'll contrast Python's standard library concurrent.futures module to the IPython.parallel framework. The former allows you to go multi-core to beat the GIL, with some caveats. But the latter lets you go multi-node.

We'll then explore what makes multi-node computation difficult, and illustrate it with a small Python program that reads a fast-moving data stream and processes it in parallel, using pykafka and Apache Kafka to provide the data stream.

Finally, we'll explore the open source frameworks that have finally "defeated" the cluster computing challenge for Python. These are Apache Storm and Apache Spark. They each have different designs -- and different Python integration options -- but their architectures are fascinating. The good news is, as of 2015, each of these frameworks has a high-quality, production-quality Python API, including one written by the presenter and his team!

You'll leave this talk with the satisfaction that whether you need to use 2 cores, 8, 32, or even 10,000 cores across hundreds of machines, you'll have a technology available and the understanding necessary to make it happen.

Never let being CPU-bound be a bottleneck for your next great data exploration or scientific computing challenge! Attend this talk to beat Python's GIL not with a CPython fork, not with a PyPy STM implementation, but instead with old-fashioned distributed computation!

Slides available here: http://www.slideshare.net/pixelmonkey... 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Andrew Montalenti: Beating Python's GIL to Max Out Your CPUs

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Jim Crist: Dask Parallelizing NumPy and Pandas through Task Scheduling

Jim Crist: Dask Parallelizing NumPy and Pandas through Task Scheduling

PyCon 2015 - Python's Infamous GIL by Larry Hastings

PyCon 2015 - Python's Infamous GIL by Larry Hastings

Nathaniel J. Smith - Trio: Async concurrency for mere mortals - PyCon 2018

Nathaniel J. Smith - Trio: Async concurrency for mere mortals - PyCon 2018

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Kubernetes — Простым Языком на Понятном Примере

Kubernetes — Простым Языком на Понятном Примере

Keynote David Beazley -  Topics of Interest (Python Asyncio)

Keynote David Beazley - Topics of Interest (Python Asyncio)

Raymond Hettinger - Super considered super! - PyCon 2015

Raymond Hettinger - Super considered super! - PyCon 2015

Принц Персии: разбираем код гениальной игры, вытирая слезы счастья

Принц Персии: разбираем код гениальной игры, вытирая слезы счастья

A  Jesse Jiryu Davis   Grok the GIL Write Fast And Thread Safe Python   PyCon 2017

A Jesse Jiryu Davis Grok the GIL Write Fast And Thread Safe Python PyCon 2017

David Beazley | Keynote: Built in Super Heroes

David Beazley | Keynote: Built in Super Heroes

Al Sweigart   Yes, It's Time to Learn Regular Expressions   PyCon 2017

Al Sweigart Yes, It's Time to Learn Regular Expressions PyCon 2017

Apache Iceberg: что это такое и почему все о нем говорят.

Apache Iceberg: что это такое и почему все о нем говорят.

Losing your Loops Fast Numerical Computing with NumPy

Losing your Loops Fast Numerical Computing with NumPy

Ori Cohen: Using DBT and Python to Build Production Pipelines in Snowflake (HE)|PyData Tel Aviv 2025

Ori Cohen: Using DBT and Python to Build Production Pipelines in Snowflake (HE)|PyData Tel Aviv 2025

Larry Hastings - Removing Python's GIL: The Gilectomy - PyCon 2016

Larry Hastings - Removing Python's GIL: The Gilectomy - PyCon 2016

The Clean Architecture in Python

The Clean Architecture in Python

Raymond Hettinger, Keynote on Concurrency, PyBay 2017

Raymond Hettinger, Keynote on Concurrency, PyBay 2017

Лучший Гайд по Kafka для Начинающих За 1 Час

Лучший Гайд по Kafka для Начинающих За 1 Час

David Beazley - Python Concurrency From the Ground Up: LIVE! - PyCon 2015

David Beazley - Python Concurrency From the Ground Up: LIVE! - PyCon 2015

Larry Hastings - Python's Infamous GIL

Larry Hastings - Python's Infamous GIL

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]