ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Allen Downey: Bayesian Decision Analysis [Tutorial] | PyData Global 2022

Автор: PyData

Загружено: 2023-03-20

Просмотров: 8517

Описание: This tutorial is a hands-on introduction to Bayesian Decision Analysis (BDA), which is a framework for using probability to guide decision-making under uncertainty. I start with Bayes's Theorem, which is the foundation of Bayesian statistics, and work toward the Bayesian bandit strategy, which is used for A/B testing, medical tests, and related applications. For each step, I provide a Jupyter notebook where you can run Python code and work on exercises. In addition to the bandit strategy, I summarize two other applications of BDA, optimal bidding and deriving a decision rule. Finally, I suggest resources you can use to learn more.

Outline * Problem statement: A/B testing, medical tests, and the Bayesian bandit problem * Prerequisites and goals * Bayes's theorem and the five urn problem * Using Pandas to represent a PMF * Notebook 1: Estimating proportions * From belief to strategy: Thompson sampling * Notebook 2: Implementing and testing Thompson sampling * Debrief: why Bayesian decision analysis is better * More generally: two other examples of BDA * Resources and next steps

Prerequisites
For this tutorial, you should be familiar with Python at an intermediate level. We'll use NumPy, SciPy, and Pandas, but I'll explain what you need to know as we go. You should be familiar with basic probability, but you don't need to know anything about Bayesian statistics.

I'll provide Jupyter notebooks that run on Colab, so you don't have to install anything or prepare ahead of time. But you should be familiar with Jupyter notebooks.

Bio:
Allen Downey
Allen Downey is a Staff Scientist at DrivenData and Professor Emeritus at Olin College.
He is the author of several textbooks -- including Think Python, Think Bayes, and Elements of Data Science -- and "Probably Overthinking It", a blog about data science and Bayesian statistics. He received a Ph.D. in computer science from U.C. Berkeley and Bachelor's and Master's degrees from MIT.
===

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Allen Downey: Bayesian Decision Analysis [Tutorial] | PyData Global 2022

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Thomas Wiecki: The State of the Art for Probabilistic Programming | PyData Global 2022

Thomas Wiecki: The State of the Art for Probabilistic Programming | PyData Global 2022

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Андрей Девятов. Что ждёт Россию после 2025 года?

Андрей Девятов. Что ждёт Россию после 2025 года?

How Bayes Theorem works

How Bayes Theorem works

A machine learning approach to stock trading | Richard Craib and Lex Fridman

A machine learning approach to stock trading | Richard Craib and Lex Fridman

Байесовские игры: ключ к безупречному принятию решений от Game Theorist

Байесовские игры: ключ к безупречному принятию решений от Game Theorist

Martin Jankowiak - Brief Introduction to Probabilistic Programming

Martin Jankowiak - Brief Introduction to Probabilistic Programming

Chris Fonnesbeck: An introduction to Markov Chain Monte Carlo using PyMC3  | PyData London 2019

Chris Fonnesbeck: An introduction to Markov Chain Monte Carlo using PyMC3 | PyData London 2019

Introduction to Bayesian data analysis - part 1: What is Bayes?

Introduction to Bayesian data analysis - part 1: What is Bayes?

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Introduction to Bayesian Statistics - A Beginner's Guide

Introduction to Bayesian Statistics - A Beginner's Guide

Переговоры, территория и будущее Украины: скрытая повестка. Дмитрий Евстафьев

Переговоры, территория и будущее Украины: скрытая повестка. Дмитрий Евстафьев

Fonnesbeck & Wiecki- Probabilistic Programming and Bayesian Computing with PyMC | PyData London 2024

Fonnesbeck & Wiecki- Probabilistic Programming and Bayesian Computing with PyMC | PyData London 2024

Bayesian Statistics Made Simple | Scipy 2019 Tutorial | Allen Downey

Bayesian Statistics Made Simple | Scipy 2019 Tutorial | Allen Downey

17. Bayesian Statistics

17. Bayesian Statistics

Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck

Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]