ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How Paul Erdős Cracked This Geometry Problem

Автор: Boppana Math

Загружено: 2025-01-31

Просмотров: 117495

Описание: Are there infinitely many points, not all on the same line, that are an integer distance apart? The answer is given by the Anning-Erdős theorem. In this video, we prove their theorem.

To stay up to date, consider subscribing to this YouTube channel.

Thanks to my daughter, Meena Boppana, for reviewing this video. She is a math tutor:
http://meenaboppana.com

Chapters
00:00 Introduction
01:26 100 Points
07:02 Infinitely Many Points
07:54 The Anning-Erdős Theorem
09:53 Proof of the Anning-Erdős Theorem
15:18 Intersection Points of Conic Sections

Wikipedia article on the Anning-Erdős theorem:
https://en.wikipedia.org/wiki/Erd%C5%...

Norman H. Anning and Paul Erdős (1945), "Integral distances", Bulletin of the American Mathematical Society 51(8), pages 598–600.
https://www.ams.org/journals/bull/194...

Paul Erdős (1945), "Integral distances", Bulletin of the American Mathematical Society 51(12), page 996.
https://www.ams.org/journals/bull/194...

Wikipedia article on Apollonius of Perga:
https://en.wikipedia.org/wiki/Apollon...

Thomas Heath's translation/rewrite (1896) of Apollonius's "Treatise on Conic Sections":
https://archive.org/details/treatiseo...
The result that two distinct conic sections intersect in at most 4 points appears as Proposition 78 on page 130.

Wikipedia article on Bézout's theorem:
https://en.wikipedia.org/wiki/B%C3%A9...

Proof of Bézout's bound in the plane:
https://ocw.mit.edu/courses/18-s997-t...

We used two hyperbola diagrams by Merrill Sherman from this article in Quanta Magazine on integer distances:
https://www.quantamagazine.org/mergin...

The final illustration of Paul Erdős is from this book:
The Boy Who Loved Math: The Improbable Life of Paul Erdős, written by Deborah Heiligman, illustrated by LeUyen Pham. 2013. Roaring Brook Press.
https://deborahheiligman.com/books/th...

Wikipedia article on the Babylonian clay tablet (Plimpton 322):
https://en.wikipedia.org/wiki/Plimpto...
We displayed part of one table from this article when discussing the 65-72-97 right triangle.

The photo of the Babylonian clay tablet came from this Columbia University article:
https://magazine.columbia.edu/article...

Thumbnail by Rostislav Demchuk.

Several viewers asked this question: how many points can you have, all an integer distance apart, of which no three points are on the same line? The answer: you can have any finite number of such points, all on one circle. Consider the (infinitely many) points on the unit circle with rational coordinates. Viewing them as complex numbers, square them all. The resulting points are a rational distance apart. We can then apply the rational-to-integer trick as in the video. This construction is an "inversion" around a circle of the stack of right triangles from the video.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How Paul Erdős Cracked This Geometry Problem

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

The Experiment That Breaks Relativity

The Experiment That Breaks Relativity

The Simplest Card Game No Mathematician Can Solve | #SoME4

The Simplest Card Game No Mathematician Can Solve | #SoME4

Weird spaces where π = 4

Weird spaces where π = 4

Steiner's Porism: proving a cool animation #SoME1

Steiner's Porism: proving a cool animation #SoME1

Hypergraphs and Acute Triangles | #SoMEpi

Hypergraphs and Acute Triangles | #SoMEpi

Unsolved Math: The No-Three-In-Line Problem #SOME3

Unsolved Math: The No-Three-In-Line Problem #SOME3

Ranking Paradoxes, From Least to Most Paradoxical

Ranking Paradoxes, From Least to Most Paradoxical

Пифагор был бы горд: новое доказательство теоремы Пифагора от старшеклассников [ТРИГОНОМЕТРИЯ]

Пифагор был бы горд: новое доказательство теоремы Пифагора от старшеклассников [ТРИГОНОМЕТРИЯ]

Cauchy's Proof of the Basel Problem | Pi Squared Over Six (3blue1brown SoME1 Entry)

Cauchy's Proof of the Basel Problem | Pi Squared Over Six (3blue1brown SoME1 Entry)

What is a Hilbert Space?

What is a Hilbert Space?

В чем НА САМОМ ДЕЛЕ заключается гипотеза Римана?

В чем НА САМОМ ДЕЛЕ заключается гипотеза Римана?

Воруй деньги РФ и беги

Воруй деньги РФ и беги

Does This Infinite Series Converge? I Solved It!

Does This Infinite Series Converge? I Solved It!

Every Unsolved Geometry Problem that Sounds Easy

Every Unsolved Geometry Problem that Sounds Easy

The 15-Year-Old Who Discovered the Law of Primes

The 15-Year-Old Who Discovered the Law of Primes

Точная формула для простых чисел: формула Вилланса

Точная формула для простых чисел: формула Вилланса

The Most Beautiful Proof sqrt(2) is Irrational

The Most Beautiful Proof sqrt(2) is Irrational

Revolutionary Math Proof No One Could Explain...Until Now [Part 1]

Revolutionary Math Proof No One Could Explain...Until Now [Part 1]

What Lies Between a Function and Its Derivative? | Fractional Calculus

What Lies Between a Function and Its Derivative? | Fractional Calculus

Как «увидеть» четвертое измерение с помощью топологии

Как «увидеть» четвертое измерение с помощью топологии

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]