ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Algebra 2 Practice - Graph the Quadratic Parabola y = x^2 - 2x - 3 on a Coordinate Plane

Polynomial

Quadratic

Exponential

Rational

Function

Equation

Inequality

Vertex

Axis of Symmetry

Complex Numbers

Asymptote

Domain

Range

Coefficient

Matrix

Determinant

Conic Section

Logarithm

Exponent

Absolute Value

math

maths

high school

math test

math quiz

tiktok

fashion

funny

math teacher

shorts

Автор: Math Teacher GOAT

Загружено: 2025-01-09

Просмотров: 1145

Описание: Please subscribe!    / nickperich  

To graph the quadratic parabola \( y = x^2 - 2x - 3 \) on a coordinate plane, follow these steps:

Step 1: Identify the Key Features
The equation is in standard form \( y = ax^2 + bx + c \), where:
\( a = 1 \)
\( b = -2 \)
\( c = -3 \)

Step 2: Find the Vertex
To find the vertex, use the formula for the \( x \)-coordinate of the vertex:
\[
x_{\text{vertex}} = \frac{-b}{2a}
\]
Substitute \( a = 1 \) and \( b = -2 \) into the formula:
\[
x_{\text{vertex}} = \frac{-(-2)}{2(1)} = \frac{2}{2} = 1
\]
Now, substitute \( x = 1 \) into the original equation to find the \( y \)-coordinate of the vertex:
\[
y = (1)^2 - 2(1) - 3 = 1 - 2 - 3 = -4
\]
So, the vertex is \( (1, -4) \).

Step 3: Find the Axis of Symmetry
The axis of symmetry is the vertical line that passes through the \( x \)-coordinate of the vertex. In this case, the axis of symmetry is:
\[
x = 1
\]

Step 4: Plot the Vertex and Axis of Symmetry
Plot the vertex \( (1, -4) \) on the coordinate plane, and draw the axis of symmetry, which is the vertical line \( x = 1 \).

Step 5: Find Additional Points
To get more points for the graph, choose values for \( x \) around the vertex (e.g., \( x = 0 \), \( x = 2 \), and \( x = -1 \)), and substitute them into the equation to find the corresponding \( y \)-values.

For \( x = 0 \):
\[
y = (0)^2 - 2(0) - 3 = -3
\]
So, the point is \( (0, -3) \).

For \( x = 2 \):
\[
y = (2)^2 - 2(2) - 3 = 4 - 4 - 3 = -3
\]
So, the point is \( (2, -3) \).

For \( x = -1 \):
\[
y = (-1)^2 - 2(-1) - 3 = 1 + 2 - 3 = 0
\]
So, the point is \( (-1, 0) \).

Step 6: Plot Additional Points
Plot the points \( (0, -3) \), \( (2, -3) \), and \( (-1, 0) \).

Step 7: Draw the Parabola
Now that you have several points, draw a smooth curve through the points, forming a U-shaped parabola that opens upwards (since \( a = 1 \), which is positive).

Final Graph Features:
Vertex: \( (1, -4) \)
Axis of symmetry: \( x = 1 \)
Parabola opens upwards
The parabola passes through the points \( (-1, 0) \), \( (0, -3) \), \( (2, -3) \), and others along the curve.

The graph of the quadratic parabola should look like a U-shaped curve with the vertex at \( (1, -4) \).

I have many informative videos for Pre-Algebra, Algebra 1, Algebra 2, Geometry, Pre-Calculus, and Calculus. Please check it out:

/ nickperich

Nick Perich
Norristown Area High School
Norristown Area School District
Norristown, Pa

#math #algebra #algebra2 #maths #math #shorts #funny #help #onlineclasses #onlinelearning #online #study

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Algebra 2 Practice - Graph the Quadratic Parabola y = x^2 - 2x - 3 on a Coordinate Plane

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]