ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

P-3: Practice Set | Machine Learning.

machine learning practice set

ml practice questions

model evaluation

confusion matrix

accuracy precision recall

f1 score

cross validation

bias variance tradeoff

machine learning basics

supervised learning

ml solved examples

machine learning tutorial

data science

ml interview preparation

cross validadtion

workflow

the maxx academy

linear regression

ridge regression

lasso regression

Автор: The MaxX Academy

Загружено: 2025-11-02

Просмотров: 1047

Описание: In this lecture, we solve four questions from a practice set on Machine Learning.

Question Included:
6. A logistic regression model is trained to predict whether a tumor is malignant (1) or benign (0) based on cell size and age:
𝑧=−5.2+0.15×CellSize+0.03×Age
Compute the probability of malignancy for a 45-year-old patient with CellSize = 28. Interpret the result.

7. A dataset of apartments shows the following relationship: Area (sq.ft) 𝑋: [600, 800, 1000, 1200, 1500] Rent (₹ per month) 𝑌: [10,000, 13,000, 16,000, 19,000, 24,000] Compute the slope and intercept for the simple linear regression model and predict the rent for an apartment with 1100 sq.ft area.

8. A real-estate analyst predicts house prices using features such as area, number of rooms, location rating, and house age. Two models are trained:
Model A: Multiple Linear Regression
Model B: Lasso Regression
Both fit the training data well, but Model B’s predictions on test data are more stable and rely on fewer features. (a) Compare the two models in terms of feature selection and generalization ability. (b) Explain how Lasso’s L1 regularization helps prevent overfitting and improve interpretability.

9. A retail analytics team applies Ridge Regression to forecast monthly sales using features such as advertising budget, price discounts, seasonal index, and competitor activity. a) Demonstrate how adjusting λ reduces the effect of multicollinearity among promotional features (e.g., advertising vs discount). b) Discuss differences between Ridge and Lasso in handling redundant predictors and explain which model would better retain correlated sales drivers. c) Recommend an evidence-based method to tune λ for maximizing predictive stability during future campaigns.

Stay tuned for more ML tutorials – don’t forget to Like, Share & Subscribe!

Theory of Computation Lectures:
   • Theory of Computation  

Computer Graphics Lectures:
   • Computer Graphics Concepts  

#logisticregression #linearregression #lassoregression #ridgeregression

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
P-3: Practice Set | Machine Learning.

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]