ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Stock Market Analysis & Markowitz Efficient Frontier on Python | Python # 11

Автор: Ахмад Бацци

Загружено: 2021-02-01

Просмотров: 203075

Описание: ☕️ Buy me a coffee: https://paypal.me/donationlink240
🙏🏻 Support me on Patreon:   / ahmadbazzi  


📚About
In Portfolio (or mean-variance) theory, the efficient frontier is a set of points (or portfolios) in which no other point achieves higher return given a certain risk. It is a spectrum that is closely related to the Markowitz Portfolio Optimization problem. In this lecture, and in an attempt of achieving the optimal portfolio in two different ways, we show how to plot the efficient frontier on a scatter plot containing different portfolios. This lecture is outlined as follows:


⏲Outline⏲
00:00 Highlights
00:23 Introduction
01:41 Setting Jupyter Lab
02:11 Pandas Datareader
04:42 Reading Stocks
06:04 Dataframe Concatenation
07:25 Returns
08:15 Log Returns
09:18 Sharpe Ratio
11:49 Log Asset Returns
12:14 Volatility Per Portfolio
13:02 Return vs Volatility Scatter Plot
18:34 Sharpe Ratio Maximization (1st way)
19:28 Scatter Plot: Returns vs Volatility
22:01 Optimal Weights by Markowitz Portfolio Optimization (2nd way)
28:00 Efficient Markowitz Frontier
32:30 Important Message
33:36 Outro

Instructor: Dr. Ahmad Bazzi
🏗️Material
Browser: https://www.google.com/chrome/
Jupyter: https://jupyter.org/
Google: https://www.google.com/
Pandas: https://pandas.pydata.org/
DataReaders: https://pandas-datareader.readthedocs...
MATPLOTLIB: https://matplotlib.org/
datetime: https://docs.python.org/3/library/dat...
SciPy: https://www.scipy.org/
NumPy: https://numpy.or/gj

📕 Related Lectures (Prerequisites)
Pandas Tutorial:    • Pandas Python Programming in one video | P...  
NumPy Tutorial:    • NumPy Linear Algebra | Python # 3  
Python Tutorial:    • Python Programming in one video | Python # 1  
MATPLOTLIB Tutorial:    • MATPLOTLIB in one video | Python # 10  
SciPy Tutorial:    • SciPy Programming | Python # 8  
Stocks Programming:    • Stock Market Analysis with Pandas Python P...  
Markowitz Portfolio Optimization:    • Stock Market Analysis & Markowitz Portfoli...  


📈 Related Stocks
NASDAQ: https://www.nasdaq.com/
CEVA: https://www.ceva-dsp.com/
GOOGLE: https://www.google.com/
Tesla: https://www.tesla.com/en_eu/models
Zomedica: https://zomedica.com/

🎵 Thanks freesound.org and Setuniman and all the users in this list for the following sounds I have used;
https://freesound.org/people/Setunima...


   / ahmadbazzi  



🔴 Subscribe for more videos on Stock Market Analysis and Financial Analysis on Python.
👍 Smash that like button, in case you find this tutorial useful.
👁‍🗨 Speak up and comment, I am all ears.

#PythonProgramming #Trading #Stocks

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Stock Market Analysis & Markowitz Efficient Frontier on Python | Python # 11

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Complete Python Pandas Data Science Tutorial! (Reading CSV/Excel files, Sorting, Filtering, Groupby)

Complete Python Pandas Data Science Tutorial! (Reading CSV/Excel files, Sorting, Filtering, Groupby)

but why isn't Markowitz working in stock market analysis ? | Convex Optimization Application # 10

but why isn't Markowitz working in stock market analysis ? | Convex Optimization Application # 10

I interviewed an AI and here’s how it went !

I interviewed an AI and here’s how it went !

Stock Market Analysis with Pandas Python Programming | Python # 6

Stock Market Analysis with Pandas Python Programming | Python # 6

Анализ фондового рынка и оптимизация портфеля Марковица | Приложение для выпуклой оптимизации №9

Анализ фондового рынка и оптимизация портфеля Марковица | Приложение для выпуклой оптимизации №9

16. Portfolio Management

16. Portfolio Management

Donald Trump's sweeping global tariffs struck down by US Supreme Court | BBC News

Donald Trump's sweeping global tariffs struck down by US Supreme Court | BBC News

Monte Carlo Simulation of a Stock Portfolio with Python

Monte Carlo Simulation of a Stock Portfolio with Python

CUDA Programming on Python

CUDA Programming on Python

Ukraina zrobiła coś NIEWIARYGODNEGO w Pokrowsku… Rosja nie ma szans!

Ukraina zrobiła coś NIEWIARYGODNEGO w Pokrowsku… Rosja nie ma szans!

Cryptocurrency and stock analysis through simple performance metrics, volatility, correlations etc.

Cryptocurrency and stock analysis through simple performance metrics, volatility, correlations etc.

Predict The Stock Market With Machine Learning And Python

Predict The Stock Market With Machine Learning And Python

Modern Portfolio Theory Explained!

Modern Portfolio Theory Explained!

Markowitz Portfolio Optimization

Markowitz Portfolio Optimization

Trading crypto off Coinbase on Python | Build your trading bot to trade cryptocurrency on Coinbase

Trading crypto off Coinbase on Python | Build your trading bot to trade cryptocurrency on Coinbase

Fundamental Analysis of Stocks with Python

Fundamental Analysis of Stocks with Python

Does Redis Stack change the database game? Redis with superpowers! 🚀🔥

Does Redis Stack change the database game? Redis with superpowers! 🚀🔥

Modern portfolio theory in Python: Efficient Frontier and minimum-variance portfolio

Modern portfolio theory in Python: Efficient Frontier and minimum-variance portfolio

Создайте свой собственный решатель портфелей Марковица с нуля | Производные | Анализ фондового рынка

Создайте свой собственный решатель портфелей Марковица с нуля | Производные | Анализ фондового рынка

Technical Stock Analysis Made Easy in Python

Technical Stock Analysis Made Easy in Python

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]