The Paper That Changed AI Image Generation Forever | Denoising Diffusion in Motion
Автор: Papers in Motion
Загружено: 2026-02-01
Просмотров: 31
Описание:
How do AI image generators like DALL-E, Stable Diffusion, and Midjourney actually work? It all started with this groundbreaking 2020 paper on Denoising Diffusion Probabilistic Models (DDPM).
🎯 What You'll Learn:
• The fundamental problem with GANs and VAEs
• How diffusion models reverse the destruction of images
• The two-step process: forward diffusion and reverse denoising
• Why DDPM achieved state-of-the-art FID score of 3.17 on CIFAR-10
• The Markov chain structure behind diffusion
• How this paper led to DALL-E, Stable Diffusion, and Midjourney
📊 Key Results:
FID Score: 3.17 (best in 2020)
Dataset: CIFAR-10
Breakthrough: Stable training + high-quality outputs
📄 Paper: "Denoising Diffusion Probabilistic Models"
Authors: Jonathan Ho, Ajay Jain, Pieter Abbeel (UC Berkeley)
Published: NeurIPS 2020
🔗 Resources:
Paper: https://arxiv.org/abs/2006.11239
Code: https://github.com/hojonathanho/diffusion
⏱️ Timestamps:
0:00 - Introduction
0:07 - The Problem with Current Models
0:20 - Why It Matters
0:32 - The Authors
0:41 - The Key Insight
0:55 - Forward Process Explained
1:09 - Reverse Process (The Magic)
1:24 - Training & Sampling
1:39 - The Full Picture
1:56 - Results & Impact
2:10 - Legacy & Conclusion
💡 This paper opened the door to modern AI image generation. Understanding DDPM is essential for anyone working with or learning about diffusion models.
#AI #MachineLearning #DiffusionModels #DDPM #StableDiffusion #DALLE #GenerativeAI #DeepLearning #ComputerVision #ArtificialIntelligence
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: