ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Top 3 metrics for reliable LLM performance

Open Source

All Things Open

Software

Technology

generative AI

LLM

AI observability

AI monitoring

AI metrics

output coherence

model accuracy

latency

AI reliability

LLM performance

developer tools

AI frameworks

RAGAS

ARES

machine learning

Python AI tools

Автор: All Things Open

Загружено: 2025-09-02

Просмотров: 85

Описание: Generative AI is moving fast, but how do you know your LLMs are performing reliably? In this lightning talk, Richard Shan from CTS explains why observability matters, which metrics to track, and how developers can ensure their AI models deliver accurate, coherent, and timely outputs. Learn practical tips to monitor your systems and gain confidence in every deployment.

Practical Generative AI Observability: Metrics & Tools for Real-Time Monitoring
Presented at All Things Open AI 2025
Presented by Richard Shan - CTS

Title: Practical Generative AI Observability: Metrics and Tools for Real-Time Monitoring
Abstract: As generative AI systems power ever more critical applications, ensuring the reliability, fairness, and performance of these systems demands robust observability frameworks. This presentation focuses on the emerging discipline of Generative AI Observability through a deep dive into strategies, methods, and best practices for real-time monitoring of generative systems. Attendees will learn metrics techniques to track key performance indicators such as output coherence, accuracy, and latency, while also gaining insights into how to detect and mitigate issues like bias, hallucination, and model drift. We'll explore state-of-the-art observability tools designed for generative AI including those tailored for large language models, RAG frameworks, and multimodal systems. The discussion will cover innovation in monitoring the components in the pipeline, from data collection and preprocessing to inference execution and outputs, as well as the integration of observability into LLMOps workflows for continuous improvement. The talk will walk through real-world cases to show how leading organizations maintain reliability, transparency, and ethical compliance in their generative AI solutions. By the end of the session, participants will have actionable knowledge to construct and support observability frameworks that improve system robustness and make their generative AI applications trustworthy and accountable.

Find more info about All Things Open:
On the web: https://www.allthingsopen.org/
Twitter:   / allthingsopen  
LinkedIn:   / all-things-open  
Instagram:   / allthingsopen  
Facebook:   / allthingsopen  
Mastodon: https://mastodon.social/@allthingsopen
Threads: https://www.threads.net/@allthingsopen
Bluesky: https://bsky.app/profile/allthingsope...
2025 conference: https://2025.allthingsopen.org/

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Top 3 metrics for reliable LLM performance

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]