How to Run Multiple AI Agents Without Breaking Your Codebase
Автор: AI at FlytBase
Загружено: 2026-02-08
Просмотров: 48
Описание:
AI coding works like a queue: One prompt, wait, review, next.
Breaks with multiple agents in same codebase. Context leaks, branches collide, files overwrite. Coordination chaos.
Problem isn't models. It's infrastructure. AI agents need isolation.
Solution: Git worktrees. Multiple branches checked out simultaneously. Different directories, same repo, independent.
Agent 1: feature-auth worktree. Agent 2: feature-logging worktree. Agent 3: feature-api worktree.
No interference. Clean context. Review separately. Merge when ready.
Plus: Match models to tasks. Planning: reasoning model. Execution: fast model. Review: different context.
At FlytBase: Multiple agents, own worktrees, appropriate models, different branches. Parallel development that works.
Hard parts: Context bleeding, silent failures, model limits, setup overhead, branch management, cost.
Solution: Clean context per agent, AI checks, model optimization, reusable templates, naming conventions.
Real bottleneck: Keeping context clean. Infrastructure solves this, not prompts.
Video shows: Actual setup, worktree config, model assignments, multi-agent workspace, real failures + fixes.
Scale AI coding: Infrastructure for isolation. Parallel agents with clean context.
🔗 https://chat.whatsapp.com/CSg6OChjPmC...
🌐 https://www.aiatflytbase.com/
#AIForDevelopers #AICoding #MultiAgent #DeveloperProductivity
Subscribe.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: