ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Transformers explained | The architecture behind LLMs

transformer explained

attention explained

queries keys values explained

position embeddings explained

masked language modelling

next word prediction

difference between transformers and RNNS

transformers versus recurrent neural networks

ChatGPT architecture explained

neural network

AI

visualized

easy

explained

basics

research

algorithm

example

machine learning research

aicoffeebean

animated

illustrated transformer

annotated transformer

LLMs explained

how LLMs work

Автор: AI Coffee Break with Letitia

Загружено: 2024-01-21

Просмотров: 36937

Описание: All you need to know about the transformer architecture: How to structure the inputs, attention (Queries, Keys, Values), positional embeddings, residual connections. Bonus: an overview of the difference between Recurrent Neural Networks (RNNs) and transformers.
9:19 Order of multiplication should be the opposite: x1(vector) * Wq(matrix) = q1(vector). Otherwise we do not get the 1x3 dimensionality at the end. Sorry for messing up the animation!

Check this out for a super cool transformer visualisation! 👏 https://poloclub.github.io/transforme...

➡️ AI Coffee Break Merch! 🛍️ https://aicoffeebreak.creator-spring....

Outline:
00:00 Transformers explained
00:47 Text inputs
02:29 Image inputs
03:57 Next word prediction / Classification
06:08 The transformer layer: 1. MLP sublayer
06:47 2. Attention explained
07:57 Attention vs. self-attention
08:35 Queries, Keys, Values
09:19 Order of multiplication should be the opposite: x1(vector) * Wq(matrix) = q1(vector).
11:26 Multi-head attention
13:04 Attention scales quadratically
13:53 Positional embeddings
15:11 Residual connections and Normalization Layers
17:09 Masked Language Modelling
17:59 Difference to RNNs

Thanks to our Patrons who support us in Tier 2, 3, 4: 🙏
Dres. Trost GbR, Siltax, Vignesh Valliappan, ‪@Mutual_Information‬ , Kshitij

Our old Transformer explained 📺 video:    • The Transformer neural network architectur...  
📺 Tokenization explained:    • What is tokenization and how does it work?...  
📺 Word embeddings:    • How modern search engines work – Vector da...  
📽️ Replacing Self-Attention:    • Replacing Self-attention  
📽️ Position embeddings:    • Position encodings in Transformers explain...  
‪@SerranoAcademy‬ Transformer series:    • The Attention Mechanism in Large Language ...  

📄 Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).

▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
🔥 Optionally, pay us a coffee to help with our Coffee Bean production! ☕
Patreon:   / aicoffeebreak  
Ko-fi: https://ko-fi.com/aicoffeebreak
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

🔗 Links:
AICoffeeBreakQuiz:    / aicoffeebreak  
Twitter:   / aicoffeebreak  
Reddit:   / aicoffeebreak  
YouTube:    / aicoffeebreak  

#AICoffeeBreak #MsCoffeeBean #MachineLearning #AI #research​
Music 🎵 : Sunset n Beachz - Ofshane
Video editing: Nils Trost

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Transformers explained | The architecture behind LLMs

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]