ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Retentive Network: A Successor to Transformer for Large Language Models (Paper Explained)

Автор: Yannic Kilcher

Загружено: 2023-09-12

Просмотров: 102949

Описание: #ai #retnet #transformers

Retention is an alternative to Attention in Transformers that can both be written in a parallel and in a recurrent fashion. This means the architecture achieves training parallelism while maintaining low-cost inference. Experiments in the paper look very promising.

OUTLINE:
0:00 - Intro
2:40 - The impossible triangle
6:55 - Parallel vs sequential
15:35 - Retention mechanism
21:00 - Chunkwise and multi-scale retention
24:10 - Comparison to other architectures
26:30 - Experimental evaluation

Paper: https://arxiv.org/abs/2307.08621

Abstract:
In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost O(1) inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at this https URL.

Authors: Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, Furu Wei


Links:
Homepage: https://ykilcher.com
Merch: https://ykilcher.com/merch
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord: https://ykilcher.com/discord
LinkedIn:   / ykilcher  

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Retentive Network: A Successor to Transformer for Large Language Models (Paper Explained)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Attention for Neural Networks, Clearly Explained!!!

Attention for Neural Networks, Clearly Explained!!!

The Science of Handwriting & Dysgraphia

The Science of Handwriting & Dysgraphia

RWKV: Reinventing RNNs for the Transformer Era (Paper Explained)

RWKV: Reinventing RNNs for the Transformer Era (Paper Explained)

Titans: Learning to Memorize at Test Time (Paper Analysis)

Titans: Learning to Memorize at Test Time (Paper Analysis)

Computational Linguistics and Intelligent Text Processing – PART I: Semantics & Discourse 4

Computational Linguistics and Intelligent Text Processing – PART I: Semantics & Discourse 4

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

RetNet: A Successor to Transformer for Large Language Models Explained

RetNet: A Successor to Transformer for Large Language Models Explained

Efficient Streaming Language Models with Attention Sinks (Paper Explained)

Efficient Streaming Language Models with Attention Sinks (Paper Explained)

[GRPO Explained] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

[GRPO Explained] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Intuition behind Mamba and State Space Models | Enhancing LLMs!

Intuition behind Mamba and State Space Models | Enhancing LLMs!

Внимание — это всё, что вам нужно (Transformer) — объяснение модели (включая математику), вывод и...

Внимание — это всё, что вам нужно (Transformer) — объяснение модели (включая математику), вывод и...

Big Bird: Transformers for Longer Sequences (Paper Explained)

Big Bird: Transformers for Longer Sequences (Paper Explained)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

FNet: смешивание токенов с преобразованиями Фурье (объяснение исследовательской работы по машинно...

FNet: смешивание токенов с преобразованиями Фурье (объяснение исследовательской работы по машинно...

How DeepSeek Rewrote the Transformer [MLA]

How DeepSeek Rewrote the Transformer [MLA]

Mixtral of Experts (Paper Explained)

Mixtral of Experts (Paper Explained)

Introduction to large language models

Introduction to large language models

Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Paper Explained)

Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Paper Explained)

MAMBA from Scratch: Neural Nets Better and Faster than Transformers

MAMBA from Scratch: Neural Nets Better and Faster than Transformers

Scaling Transformer to 1M tokens and beyond with RMT (Paper Explained)

Scaling Transformer to 1M tokens and beyond with RMT (Paper Explained)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]