3DGS Revolution: Train AI to Spot Apples with 99.6% Less Annotation!
Автор: CollapsedLatents
Загружено: 2026-01-11
Просмотров: 1
Описание:
🍎🤖 *Train AI to see apples in an orchard—without labeling a single one by hand!*
In this breakthrough demo, we use *3D Gaussian Splatting (3DGS)* to reconstruct a full orchard from just **367 images**—then auto-label **105 apples in 3D**, slashing annotation effort by **99.6%**! No more hours of pixel-pushing.
From that 3D model, we:
✅ Automatically projected labels onto all original images
✅ Generated *thousands of synthetic training images* from new camera angles
✅ Quantified *occlusion rate* using depth from the point cloud—revealing a key insight: *train only on apples ≤95% visible* for best results!
🔥 Results:
*F1 score of 0.927* on real images, *0.970* on rendered ones
Position estimation degrades with occlusion—but orientation? Still weak: *48° average error*
More data helped position… but **hurt orientation**, suggesting the model wasn’t learning—just guessing
This isn’t just about efficiency—it’s about **reality**: 3DGS turns sparse data into scalable, high-quality training pipelines. A game-changer for **agricultural robotics**, **autonomous harvesting**, and **real-world 5D pose estimation**.
👉 Perfect for AI/ML devs, robotics engineers, and vision researchers. *Beginner-friendly? Yes—no PhD required.*
🔔 *Like, Subscribe & Hit the Bell* for more AI breakthroughs that make smart robots actually work in the real world!
💬 **Comment below**: What’s the next frontier in 3D AI for agriculture?
#AI #ComputerVision #3DGS #PoseEstimation #AgriculturalAI #Robotics #MachineLearning #DeepLearning #3DReconstruction #GaussianSplatting #OpenSourceAI #Shorts
Read more on arxiv by searching for this paper: 2512.20148v1.pdf
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: