ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How to Aggregate Rows by the Latest Dates in a Pandas DataFrame

How do I aggregate rows in a pandas dataframe according to the latest dates in a column?

python

pandas

pandas groupby

aggregation

Автор: vlogize

Загружено: 2025-05-28

Просмотров: 0

Описание: Learn how to effectively aggregate rows in a Pandas DataFrame, keeping only the latest date entries for each unique item using straightforward techniques.
---
This video is based on the question https://stackoverflow.com/q/67305572/ asked by the user 'milandeleev' ( https://stackoverflow.com/u/15145839/ ) and on the answer https://stackoverflow.com/a/67305677/ provided by the user 'zerecees' ( https://stackoverflow.com/u/11323304/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do I aggregate rows in a pandas dataframe according to the latest dates in a column?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Aggregate Rows by the Latest Dates in a Pandas DataFrame

If you're working with data in Python, especially with libraries like Pandas, you might find yourself needing to aggregate rows based on a specific criterion. One common scenario occurs when you have a DataFrame containing various items (like materials), their purchase dates, and corresponding prices. This guide will walk you through the process of filtering your DataFrame to keep only the latest entry for each material based on the date of purchase.

The Problem

Imagine a DataFrame structured like this:

MaterialPurchase DatePriceSteel2023-10-01500Steel2023-09-15480Copper2023-10-01300Copper2023-08-10290You want to filter the DataFrame so that it retains just one row for each material, specifically the row containing the latest purchase date and its associated price. This can be crucial for tasks like financial reporting or inventory management where keeping track of the most recent transactions is essential.

The Solution

The solution to this problem involves a couple of straightforward steps in Pandas: sorting the DataFrame and removing duplicates. Below are step-by-step instructions to achieve the desired outcome.

Step 1: Import Pandas

Before you can manipulate your DataFrame, ensure you have Pandas imported. If you haven't installed it yet, you can do so using pip:

[[See Video to Reveal this Text or Code Snippet]]

Then, start by importing Pandas in your Python script or notebook:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Sort the DataFrame

To ensure that the latest purchase dates come first for each material, you need to sort your DataFrame. You can achieve this by using the sort_values function. Here’s how to sort the DataFrame based on the material and purchase date:

[[See Video to Reveal this Text or Code Snippet]]

This line of code does the following:

It sorts the DataFrame by the column 'Material' in ascending order while sorting 'Purchase Date' in descending order.

The inplace=True parameter modifies the original DataFrame directly.

Step 3: Remove Duplicates

Once sorted, the next step is to drop duplicates to keep only the first occurrence of each material. This can be done using the drop_duplicates function:

[[See Video to Reveal this Text or Code Snippet]]

This line of code specifies that you want to drop duplicates based on the 'Material' column. The keep='first' parameter ensures that you retain the first occurrence, which, thanks to the sorting step, will be the row with the latest purchase date.

Example Code

Putting it all together, here’s how the complete code would look:

[[See Video to Reveal this Text or Code Snippet]]

Output

After running this code, you would get the following DataFrame:

MaterialPurchase DatePriceCopper2023-10-01300Steel2023-10-01500This shows that you've successfully aggregated your DataFrame to reflect only the latest purchases for each material.

Conclusion

Aggregating rows in a Pandas DataFrame according to the latest dates is a simple process that can greatly enhance your data analysis capabilities. By sorting and removing duplicates, you effectively create a cleaner, more relevant dataset that focuses on the most recent transactions.

If you find yourself frequently needing to perform operations like this, remember that Pandas provides a flexible and powerful way to handle data in Python. Happy coding!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How to Aggregate Rows by the Latest Dates in a Pandas DataFrame

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

Python Pandas Tutorial (Part 1): Getting Started with Data Analysis - Installation and Loading Data

SQL WITH Clause | How to write SQL Queries using WITH Clause | SQL CTE (Common Table Expression)

SQL WITH Clause | How to write SQL Queries using WITH Clause | SQL CTE (Common Table Expression)

Reading in Files in Pandas | Python Pandas Tutorials

Reading in Files in Pandas | Python Pandas Tutorials

Python Pandas Tutorial 2: Dataframe Basics

Python Pandas Tutorial 2: Dataframe Basics

Merging DataFrames in Pandas | Python Pandas Tutorials

Merging DataFrames in Pandas | Python Pandas Tutorials

How to use Microsoft Power Query

How to use Microsoft Power Query

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Учим неправильные глаголы | Speak all Week | Разговорный английский

Учим неправильные глаголы | Speak all Week | Разговорный английский

How to use Microsoft Access - Beginner Tutorial

How to use Microsoft Access - Beginner Tutorial

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]