ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Matthew Tancik: Neural Radiance Fields for View Synthesis

Автор: Andreas Geiger

Загружено: 2020-06-29

Просмотров: 31680

Описание: Talk @ Tübingen seminar series of the Autonomous Vision Group
https://uni-tuebingen.de/en/faculties...

Neural Radiance Fields for View Synthesis
Matthew Tancik (UC Berkeley)

Abstract: In this talk I will present our recent work on Neural Radiance Fields (NeRFs) for view synthesis. We are able to achieve state-of-the-art results for synthesizing novel views of scenes with complex geometry and view dependent effects from a sparse set of input views by optimizing an underlying continuous volumetric scene function parameterized as a fully-connected deep network. In this work we combine the recent advances in coordinate based neural representations with classic methods for volumetric rendering. In order to recover high frequency content in the scene, we find that it is necessary to map the input coordinates to a higher dimensional space using Fourier features before feeding them through the network. In our followup work we use Neural Tangent Kernel analysis to show that this is equivalent to transforming our network into a stationary kernel with tunable bandwidth.

Bio: Matthew studied Computer Science and Physics at Massachusetts Institute of Technology where he received his bachelor degree in 2016 and master degree in 2017. During his masters degree he worked under the supervision of Ramesh Raskar and Fredo Durand and published his thesis on non-line-of-sight imaging using data driven approaches. He began his PhD in 2018 at UC Berkeley under the supervision of Ren Ng. He is currently interested in exploring the intersection of vision and graphics for robotic perception and view synthesis applications. https://www.matthewtancik.com/

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Matthew Tancik: Neural Radiance Fields for View Synthesis

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Andrea Tagliasacchi: Structured Representations for 3D Computer Vision

Andrea Tagliasacchi: Structured Representations for 3D Computer Vision

NeRF: Представление сцен в виде нейронных полей излучения для синтеза представлений (объяснение и...

NeRF: Представление сцен в виде нейронных полей излучения для синтеза представлений (объяснение и...

Yash Sharma: Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Yash Sharma: Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

A Brief Introduction to Neural Radiance Fields | CESCG Academy 2023

A Brief Introduction to Neural Radiance Fields | CESCG Academy 2023

Понимание GD&T

Понимание GD&T

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Jon Barron - Understanding and Extending Neural Radiance Fields

Jon Barron - Understanding and Extending Neural Radiance Fields

Learning Robust Policies for Self-Driving

Learning Robust Policies for Self-Driving

Vincent Sitzmann: Implicit Neural Scene Representations

Vincent Sitzmann: Implicit Neural Scene Representations

Generating Images and 3D Shapes

Generating Images and 3D Shapes

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Tutorial: Efficient Gaussian Splatting | CVPR 2024

Tutorial: Efficient Gaussian Splatting | CVPR 2024

Constraining 3D Fields for Reconstruction and View Synthesis

Constraining 3D Fields for Reconstruction and View Synthesis

Xavier Bresson:

Xavier Bresson: "The Transformer Network for the Traveling Salesman Problem"

Моделирование Монте-Карло

Моделирование Монте-Карло

Matthias Niessner - Why Neural Rendering is Super Cool!

Matthias Niessner - Why Neural Rendering is Super Cool!

Implicit Neural Representations: From Objects to 3D Scenes

Implicit Neural Representations: From Objects to 3D Scenes

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

NERFs (No, not that kind) - Computerphile

NERFs (No, not that kind) - Computerphile

C. Baumgartner: Machine learning for medical image analysis and why clinicians are not using it

C. Baumgartner: Machine learning for medical image analysis and why clinicians are not using it

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]