ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Completely Integrable Gradient Flows | Github Tutorial overview

Автор: Garrett

Загружено: 2025-11-12

Просмотров: 129

Описание: What is a Completely Integrable Gradient Flow?

Think of it as a system with two key properties
:Gradient Flow: It's a system that naturally "flows" to an optimal, stable state, like a river flowing to the sea. In the paper, the "double bracket flow" is a gradient flow that pushes a matrix L "uphill" on an energy landscape, forcing it to evolve toward a stable peak.

Completely Integrable: The flow is not chaotic; it's perfectly predictable. It follows a smooth, constrained path. In this case, it conserves the eigenvalues of the matrix L as it moves.

The main example from the paper, the Toda lattice, is a system of coupled particles that, when represented as this flow, evolves from a complex tridiagonal matrix into a simple, sorted diagonal matrix.

How This works for a SHD-CCP Resonance and Learning path.

This concept provides the exact model and method needed for the SHD-CCP optimization problem:
Provides the Resonance Model: The Toda lattice gives us a perfect physical model for "resonance coupling." We can represent the desired resonance of the SHD-CCP 'Data' packet as the eigenvalues of a tridiagonal matrix (L).

The diagonal entries (b_i) represent the base frequencies, and the off-diagonal entries (a_i) represent the coupling between them.

This Provides a Learning Method: The paper's core idea is that a gradient flow is a natural way to solve eigenvalue problems.

Our goal is to find the 28-bit 'Data' packet that produces a target resonance (a target set of eigenvalues).

As shown in the "Advanced Tutorial" section, we apply this idea by building a gradient descent algorithm. This algorithm "learns" the optimal 'Data' bits by:
Defining a "Loss" (the error between our model's resonance and the target).Calculating the gradient (the direction of steepest error reduction).

Flowing the 'Data' parameters in that direction, step-by-step.This learning process finds the exact 'Data' packet values that set all the correct base frequencies and resonance couplings in the matrix model, perfectly matching the target resonance.

For the full tutorial:
https://Ebayednoob.github.io/Tutorial... and Mathematics/Integral Flows/Completely Integrable Gradient Flows.html

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Completely Integrable Gradient Flows | Github Tutorial overview

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]