ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Machine Learning & Data Science Project - 4 : Outlier Removal (Real Estate Price Prediction Project)

outlier removal python

finding outliers in pandas

remove outliers python pandas

data science outliers remove

machine learning outliers remove

machine learning outliers detection

machine learning outliers

data science outliers detection

data science outliers

how to remove outliers

outlier detection and treatment

outlier detection and removal

outlier removal

outlier treatment

outlier detection

outliers

Автор: codebasics

Загружено: 2019-12-31

Просмотров: 205507

Описание: This data science project series walks through step by step process of how to build a real estate price prediction website. We will first build a model using sklearn and linear regression using banglore home prices dataset from kaggle.com. Second step would be to write a python flask server that uses the saved model to serve http requests. Third component is the website built in html, css and javascript that allows user to enter home square ft area, bedrooms etc and it will call python flask server to retrieve the predicted price. During model building we will cover almost all data science concepts such as data load and cleaning, outlier detection and removal, feature engineering, dimensionality reduction, gridsearchcv for hyperparameter tunning, k fold cross validation etc. Technology and tools wise this project covers,
1) Python
2) Numpy and Pandas for data cleaning
3) Matplotlib for data visualization
4) Sklearn for model building
5) Jupyter notebook, visual studio code and pycharm as IDE
6) Python flask for http server
7) HTML/CSS/Javascript for UI

In this particular video we will load banglore home prices data into pandas dataframe and than handle NA values. We will than removal some unnecessary features and also normalize property size. We will convert the range of property size (such as 2100-3250) into an average of min and max.

Do you want to learn technology from me? Check https://codebasics.io/ for my affordable video courses.

Next video:
Data Science Project - 5: Model Building (Real Estate Price Prediction Project)    • Machine Learning & Data Science Project - ...  

Popular Playlist:
Data Science Full Course:    • Data Science Full Course For Beginners | P...  

Data Science Project:    • Machine Learning & Data Science Project - ...  

Machine learning tutorials:    • Machine Learning Tutorial Python -1: What ...  

Pandas:    • Python Pandas Tutorial 1. What is Pandas p...  

matplotlib:    • Matplotlib Tutorial 1 - Introduction and I...  

Python:    • Why Should You Learn Python? | Complete py...  

Jupyter Notebook:    • What is Jupyter Notebook? | Jupyter Notebo...  

Code: https://github.com/codebasics/py/blob...
Parent Code Repository: https://github.com/codebasics/py/tree...

Website: https://codebasics.io/
Facebook:   / codebasicshub  
Twitter:   / codebasicshub  

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Machine Learning & Data Science Project - 4 : Outlier Removal (Real Estate Price Prediction Project)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]