ycliper

ะŸะพะฟัƒะปัั€ะฝะพะต

ะœัƒะทั‹ะบะฐ ะšะธะฝะพ ะธ ะะฝะธะผะฐั†ะธั ะะฒั‚ะพะผะพะฑะธะปะธ ะ–ะธะฒะพั‚ะฝั‹ะต ะกะฟะพั€ั‚ ะŸัƒั‚ะตัˆะตัั‚ะฒะธั ะ˜ะณั€ั‹ ะฎะผะพั€

ะ˜ะฝั‚ะตั€ะตัะฝั‹ะต ะฒะธะดะตะพ

2025 ะกะตั€ะธะฐะปั‹ ะขั€ะตะนะปะตั€ั‹ ะะพะฒะพัั‚ะธ ะšะฐะบ ัะดะตะปะฐั‚ัŒ ะ’ะธะดะตะพัƒั€ะพะบะธ Diy ัะฒะพะธะผะธ ั€ัƒะบะฐะผะธ

ะขะพะฟ ะทะฐะฟั€ะพัะพะฒ

ัะผะพั‚ั€ะตั‚ัŒ ะฐ4 schoolboy runaway ั‚ัƒั€ะตั†ะบะธะน ัะตั€ะธะฐะป ัะผะพั‚ั€ะตั‚ัŒ ะผัƒะปัŒั‚ั„ะธะปัŒะผั‹ ัะดะธัะพะฝ
ะกะบะฐั‡ะฐั‚ัŒ

โšก ๐–๐ก๐š๐ญ โ€œ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ โ€ ๐‘๐ž๐š๐ฅ๐ฅ๐ฒ ๐Œ๐ž๐š๐ง๐ฌ ๐ข๐ง ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  โšก

ะะฒั‚ะพั€: ricks_ai_lab

ะ—ะฐะณั€ัƒะถะตะฝะพ: 2025-11-08

ะŸั€ะพัะผะพั‚ั€ะพะฒ: 4

ะžะฟะธัะฐะฝะธะต: โšก ๐–๐ก๐š๐ญ โ€œ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ โ€ ๐‘๐ž๐š๐ฅ๐ฅ๐ฒ ๐Œ๐ž๐š๐ง๐ฌ ๐ข๐ง ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  โšก

In Machine Learning, ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐ข๐ฌ๐งโ€™๐ญ ๐ฎ๐ง๐๐ž๐ซ๐ฌ๐ญ๐š๐ง๐๐ข๐ง๐  โ€” ๐ข๐ญโ€™๐ฌ ๐จ๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง.
A model doesnโ€™t โ€œget smarterโ€ โ€” it ๐ซ๐ž๐๐ฎ๐œ๐ž๐ฌ ๐ž๐ซ๐ซ๐จ๐ซ ๐ฌ๐ญ๐ž๐ฉ ๐›๐ฒ ๐ฌ๐ญ๐ž๐ฉ, adjusting itself to make slightly better predictions over time.

๐Ÿง  ๐“๐ก๐ž ๐‚๐จ๐ซ๐ž ๐ˆ๐๐ž๐š:
The model makes a prediction, measures how far off it is from the truth using a ๐ฅ๐จ๐ฌ๐ฌ ๐Ÿ๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง, then updates its internal parameters (weights) to ๐ฆ๐ข๐ง๐ข๐ฆ๐ข๐ณ๐ž ๐ญ๐ก๐š๐ญ ๐ฅ๐จ๐ฌ๐ฌ.
This process โ€” often driven by ๐ ๐ซ๐š๐๐ข๐ž๐ง๐ญ ๐๐ž๐ฌ๐œ๐ž๐ง๐ญโ€” repeats thousands or millions of times until the model reaches a point of ๐ฆ๐ข๐ง๐ข๐ฆ๐š๐ฅ ๐ž๐ซ๐ซ๐จ๐ซ.

๐Ÿ’ก ๐ˆ๐ง ๐ก๐ฎ๐ฆ๐š๐ง ๐ญ๐ž๐ซ๐ฆ๐ฌ:
Itโ€™s like ๐Ÿ๐š๐ข๐ฅ๐ข๐ง๐  ๐ž๐Ÿ๐Ÿ๐ข๐œ๐ข๐ž๐ง๐ญ๐ฅ๐ฒ โ€” learning by falling down the stairs over and over until you stop breaking your nose.
Every mistake is ๐Ÿ๐ž๐ž๐๐›๐š๐œ๐ค, and every correction brings the model closer to optimal performance.

๐ˆ๐ง ๐ฌ๐ก๐จ๐ซ๐ญ:
โ€” ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  = ๐ˆ๐ญ๐ž๐ซ๐š๐ญ๐ข๐ฏ๐ž ๐ž๐ซ๐ซ๐จ๐ซ ๐œ๐จ๐ซ๐ซ๐ž๐œ๐ญ๐ข๐จ๐ง.
โ€” ๐๐ซ๐จ๐ ๐ซ๐ž๐ฌ๐ฌ = ๐‘๐ž๐๐ฎ๐œ๐ž๐ ๐ฅ๐จ๐ฌ๐ฌ, ๐ง๐จ๐ญ ๐ฌ๐ฎ๐๐๐ž๐ง ๐ข๐ง๐ฌ๐ข๐ ๐ก๐ญ.
โ€” ๐๐จ๐ญ๐ก ๐›๐ซ๐š๐ข๐ง๐ฌ ๐š๐ง๐ ๐›๐จ๐ญ๐ฌ ๐š๐ซ๐ž ๐ฃ๐ฎ๐ฌ๐ญ ๐ฌ๐ฒ๐ฌ๐ญ๐ž๐ฆ๐ฌ ๐ญ๐ซ๐ฒ๐ข๐ง๐  ๐ง๐จ๐ญ ๐ญ๐จ ๐ฌ๐ฎ๐œ๐ค.

#machinelearning #deeplearning #artificialintelligence #optimization #gradientdescent #ai #datascience #education #programming #coding #aitutorials

ะะต ัƒะดะฐะตั‚ัั ะทะฐะณั€ัƒะทะธั‚ัŒ Youtube-ะฟะปะตะตั€. ะŸั€ะพะฒะตั€ัŒั‚ะต ะฑะปะพะบะธั€ะพะฒะบัƒ Youtube ะฒ ะฒะฐัˆะตะน ัะตั‚ะธ.
ะŸะพะฒั‚ะพั€ัะตะผ ะฟะพะฟั‹ั‚ะบัƒ...
โšก ๐–๐ก๐š๐ญ โ€œ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ โ€ ๐‘๐ž๐š๐ฅ๐ฅ๐ฒ ๐Œ๐ž๐š๐ง๐ฌ ๐ข๐ง ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  โšก

ะŸะพะดะตะปะธั‚ัŒัั ะฒ:

ะ”ะพัั‚ัƒะฟะฝั‹ะต ั„ะพั€ะผะฐั‚ั‹ ะดะปั ัะบะฐั‡ะธะฒะฐะฝะธั:

ะกะบะฐั‡ะฐั‚ัŒ ะฒะธะดะตะพ

  • ะ˜ะฝั„ะพั€ะผะฐั†ะธั ะฟะพ ะทะฐะณั€ัƒะทะบะต:

ะกะบะฐั‡ะฐั‚ัŒ ะฐัƒะดะธะพ

ะŸะพั…ะพะถะธะต ะฒะธะดะตะพ

© 2025 ycliper. ะ’ัะต ะฟั€ะฐะฒะฐ ะทะฐั‰ะธั‰ะตะฝั‹.



  • ะšะพะฝั‚ะฐะบั‚ั‹
  • ะž ะฝะฐั
  • ะŸะพะปะธั‚ะธะบะฐ ะบะพะฝั„ะธะดะตะฝั†ะธะฐะปัŒะฝะพัั‚ะธ



ะšะพะฝั‚ะฐะบั‚ั‹ ะดะปั ะฟั€ะฐะฒะพะพะฑะปะฐะดะฐั‚ะตะปะตะน: [email protected]