โก ๐๐ก๐๐ญ โ๐๐๐๐ซ๐ง๐ข๐ง๐ โ ๐๐๐๐ฅ๐ฅ๐ฒ ๐๐๐๐ง๐ฌ ๐ข๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ โก
ะะฒัะพั: ricks_ai_lab
ะะฐะณััะถะตะฝะพ: 2025-11-08
ะัะพัะผะพััะพะฒ: 4
ะะฟะธัะฐะฝะธะต:
โก ๐๐ก๐๐ญ โ๐๐๐๐ซ๐ง๐ข๐ง๐ โ ๐๐๐๐ฅ๐ฅ๐ฒ ๐๐๐๐ง๐ฌ ๐ข๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ โก
In Machine Learning, ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐ข๐ฌ๐งโ๐ญ ๐ฎ๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ โ ๐ข๐ญโ๐ฌ ๐จ๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐๐ญ๐ข๐จ๐ง.
A model doesnโt โget smarterโ โ it ๐ซ๐๐๐ฎ๐๐๐ฌ ๐๐ซ๐ซ๐จ๐ซ ๐ฌ๐ญ๐๐ฉ ๐๐ฒ ๐ฌ๐ญ๐๐ฉ, adjusting itself to make slightly better predictions over time.
๐ง ๐๐ก๐ ๐๐จ๐ซ๐ ๐๐๐๐:
The model makes a prediction, measures how far off it is from the truth using a ๐ฅ๐จ๐ฌ๐ฌ ๐๐ฎ๐ง๐๐ญ๐ข๐จ๐ง, then updates its internal parameters (weights) to ๐ฆ๐ข๐ง๐ข๐ฆ๐ข๐ณ๐ ๐ญ๐ก๐๐ญ ๐ฅ๐จ๐ฌ๐ฌ.
This process โ often driven by ๐ ๐ซ๐๐๐ข๐๐ง๐ญ ๐๐๐ฌ๐๐๐ง๐ญโ repeats thousands or millions of times until the model reaches a point of ๐ฆ๐ข๐ง๐ข๐ฆ๐๐ฅ ๐๐ซ๐ซ๐จ๐ซ.
๐ก ๐๐ง ๐ก๐ฎ๐ฆ๐๐ง ๐ญ๐๐ซ๐ฆ๐ฌ:
Itโs like ๐๐๐ข๐ฅ๐ข๐ง๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ โ learning by falling down the stairs over and over until you stop breaking your nose.
Every mistake is ๐๐๐๐๐๐๐๐ค, and every correction brings the model closer to optimal performance.
๐๐ง ๐ฌ๐ก๐จ๐ซ๐ญ:
โ ๐๐๐๐ซ๐ง๐ข๐ง๐ = ๐๐ญ๐๐ซ๐๐ญ๐ข๐ฏ๐ ๐๐ซ๐ซ๐จ๐ซ ๐๐จ๐ซ๐ซ๐๐๐ญ๐ข๐จ๐ง.
โ ๐๐ซ๐จ๐ ๐ซ๐๐ฌ๐ฌ = ๐๐๐๐ฎ๐๐๐ ๐ฅ๐จ๐ฌ๐ฌ, ๐ง๐จ๐ญ ๐ฌ๐ฎ๐๐๐๐ง ๐ข๐ง๐ฌ๐ข๐ ๐ก๐ญ.
โ ๐๐จ๐ญ๐ก ๐๐ซ๐๐ข๐ง๐ฌ ๐๐ง๐ ๐๐จ๐ญ๐ฌ ๐๐ซ๐ ๐ฃ๐ฎ๐ฌ๐ญ ๐ฌ๐ฒ๐ฌ๐ญ๐๐ฆ๐ฌ ๐ญ๐ซ๐ฒ๐ข๐ง๐ ๐ง๐จ๐ญ ๐ญ๐จ ๐ฌ๐ฎ๐๐ค.
#machinelearning #deeplearning #artificialintelligence #optimization #gradientdescent #ai #datascience #education #programming #coding #aitutorials
ะะพะฒัะพััะตะผ ะฟะพะฟััะบั...
ะะพัััะฟะฝัะต ัะพัะผะฐัั ะดะปั ัะบะฐัะธะฒะฐะฝะธั:
ะกะบะฐัะฐัั ะฒะธะดะตะพ
-
ะะฝัะพัะผะฐัะธั ะฟะพ ะทะฐะณััะทะบะต: